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ON THE INSTABILITY OF TOROIDAL MAGNETIC
FIELDS AND DIFFERENTIAL ROTATION IN STARS

By D.J. ACHESON
St Catherine’s College, Oxford, UK.}
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OH An electrically conducting spherical body of gas rotates in the presence of an azimuthal

M= (toroidal) magnetic field B and its own gravitational field. Instabilities of the system

- G due to either differential rotation or meridional gradients of B are examined by means

T of a local analysis. Account is taken of viscous, ohmic and thermal diffusion, the diffusi-

— 8 vities being denoted by », # and « respectively. Attention is mainly focused on the

‘rapidly rotating’ case in which the magnetic energy of the system is only a small
fraction (e) of the rotational energy.

A discussion is given of some overlooked aspects of Goldreich—Schubert instability,
which is usually said to occur if the angular momentum (per unit mass) decreases with
distance r from the rotation axis or varies with distance z parallel to that axis. It is then
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460 D.J. ACHESON

shown that a toroidal magnetic field is not only less capable of suppressing the insta-
bility than has hitherto been supposed (when v < %) but actually acts as a catalyst for
another quite different differential rotation instability if # is sufficiently small. This one is
non-axisymmetric and substantially precedes that of Goldreich & Schubert by developing
rapidly and with large azimuthal wavenumber if the angular velocity decreases more
than a very small amount (O(e)) with 7. When the gasis strongly thermally stratified this
instability still occurs if # is sufficiently small compared with «.

When the rotation is uniform, instability may still occur owing to the (r, z) distribu-
tion of the toroidal magnetic field itself. Its nature depends crucially on whether the
region of interest is inside or outside a certain ‘critical radius’, the latter case being
typically the more important astrophysically. Other geometrical effects of this kind com-
plicate the issue, and though summarized at the end of the paper are difficult to report
concisely here. The following results apply to a considerably simpler plane layer model
previously investigated by Gilman (1970) and Roberts & Stewartson (1977).

When the temperature gradient is almost adiabatic (as in a stellar convection zone)
and rotation is absent, instability occurs (on the Alfvénic time scale) by Parker’s
mechanism of magnetic buoyancy if B decreases with height. Rapid uniform rotation,
such that € € 1, stabilizes some field distributions, but those whichdecrease with height
Jaster than the density p remain unstable (albeit with growth rates reduced by a factor of
order et) provided 7 is sufficiently small. When the gas is strongly thermally stratified
(as in a stellar radiative interior) these results still apply if the thermal diffusivity « is
large enough to annul the effects of buoyancy, and this 1s the case if Dy = «V?2/y N2H?
is large. Here V denotes the Alfvén speed, H the scale height and N the (conventional)
buoyancy frequency. In the rapidly rotating case the stability of the system behaves in
a curious way as D, is steadily decreased from an infinite value. The first significant effect
of decreasing «, or equivalently of increasing the stratification (1), is a destabilizing one,
and only when D, drops below about unity does the stratification exert a significant
stabilizing influence.

The magnetic buoyancy instabilities above are all non-axisymmetric, but the
possibility of axisymmetric instability, despite strong uniform rotation and stable
stratification, is examined in an appendix. A somewhat novel instability, involving the
simultaneous operation of two conceptually quitedifferent doubly diffusive mechanisms,
arises if v/7 is sufficiently small and « /7 is sufficiently large.

1. INTRODUCGTION

We examine in this paper the stability of an electrically conducting gas rotating with angular
velocity £(r, z) about the z-axis of a cylindrical polar coordinate system (r, 6, z) in the presence of
an azimuthal (i.e. toroidal) magnetic field B(r,z). The fluid is subject to a spherically
symmetric gravitational body force (per unit mass) g* = (—g*sin 0,0, — g* cos @), where 0 is
the polar angle. It is convenient to use instead ‘apparent’ gravity g = (—gF+0%,0, —g¥)
in the stability analysis, which is a purely local one, formally valid only in the immediate neigh-
bourhood of a particular station (r, z) (which may however be chosen arbitrarily) and then only
for perturbations of wavelength A in the 7 — z plane such that A% < 72+ z2. Both axisymmetric and
non-axisymmetric disturbances are considered, and the azimuthal wavelength will usually be
quite large, perhaps O(r).

Before setting our problem in the context of previous work it is helpful tointroduce some of the
ingredients. Thus four dynamical speeds naturally arise, namely the rotation speed Qr, the
Alfvén speed V (proportional to the magnetic field), the (isothermal) sound speed @, and a
typical speed of free fall under gravity (gr)%, but hybrid combinations of these also turn out to be
important. Three different irreversible processes are incorporated into the analysis, namely
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MAGNETIC INSTABILITIES IN STARS 461

diffusion of vorticity, magnetic flux and heat, and respective measures of these are the kinematic
viscosity v, the magnetic diffusivity % (proportional to the electrical resistivity) and the thermal
diffusivity «, all of which have the same dimensions (length)? (time)~!. These coeflicients are
taken to be so small that the influence of diffusion on the mean quantities, such as £ and B, is
negligible on the time scales of interest, while the perturbations, by virtue of a sufficiently short
meridional wavelength A, may feel diffusive effects, and these may be either stabilizing or
destabilizing.

We shall throughout this paper confine attention to situations which are convectively stable
(or, at least, neutral) by assuming no decrease of the specific entropy E in the vertical direction.
In the stably stratified situation a fluid element displaced adiabatically would, in the absence of
all the other effects we are attempting to consider, oscillate under buoyancy forces at the ‘ Brunt-
Vaisala’ frequency N = (N7 + N2)%, where

2 _ & OF 2 _ & OF
Nr'—,yar3 Nz—,yaz: (1'1)

and vy denotes the ratjo of specific heats. The two possible sources of instability in our system are
differential rotation 2(r, z) and meridional gradients of the azimuthal magnetic field B(r, z).

The motivation for this study is an astrophysical one, and we keep in mind throughout (while
leaving detailed calculations for separate publication elsewhere) applications to the radiative
interjor of the Sun. The parameter values there are such that the régime

(i) V2/r2< N?; 2*< N2,
(ii) a* ~ gr, (1.2)
(iil) v €« 9 <k,

is an appropriate one to consider. We hope also, however, that our study may have some bearing
on the dynamics of the upper layers of the Sun, despite the fact that they are in a state of turbulent
convection. In that case (1.2) is not appropriate; a better (but still over-simplified) view is to take
N = 0 (since a nearly adiabatic temperature gradient may be assumed to obtain) and recognize
that the scale height H = a?/g will be considerably smaller than 7, in contrast to (ii) above.
Depending, presumably, on the strength of the convection it may be appropriate to replace the
diffusivities in (iii) by semi-empirical ‘eddy’ values, and these would probably not be widely
disparate.

Instabilities of differential rotation have been reviewed in an astrophysical context by several
authors, notably Spiegel & Zahn (1970), Fricke & Kippenhahn (1972) and Zahn (1974, 1975)
(but see also Strittmatter 1969; Spiegel 19724; Mestel 1975; Roxburgh 1975). Perhaps the best
known result is that obtained by Goldreich & Schubert (1967) and Fricke (1968) in the wake of
Dicke’s (1964) suggestion that the deep interior of the Sun might be rotating roughly 20 times
faster than the surface. We take the opportunity of emphasizing here a modified version of their
result, namely that when 2% € N? but v € « axisymmetric instability occurs despite the heavy
stratification if either

1
T3

S5 (2r92 > ZyN? (1.3)

9
or

or

2 2
(ég) > Ey—gz—sin 2@-5%(95in2 0). (1.4)

40-2
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462 D.J. ACHESON

These criteria are not wholly new, as noted in §4 where they are derived, but they do appear to
have been totally neglected in most of the literature on the subject wherein the present author, at
least, invariably finds quoted only the v/k - 0 limit of the instability criteria:

0(2r3)/or < 0 or 02/0z+#0. (1.5a, b)

Clearly the extent to which (1.5) provides an adequate description of the criteria (1.3) and (1.4)

depends on the parameter
v N2

which, due to the two competing elements (v < «, 22 < N?), may or may not be small.

The possibility of suppressing Goldreich-Schubert instability by azimuthal magnetic fields
has been explored by Fricke (1969), who concluded that very large fields, with V2 2 Q%2 would
be necessary. We re-examine this possibility in §4 and find that it is rendered even more remote
by further doubly diffusive effects due to the disparity between » and 7.

The Goldreich-Schubert instability occurs when there is a radially outward decrease of
angular momentum (per unit mass) Qr2, essentially by the classic centrifugal instability mechanism
discovered by Lord Rayleigh (1916). It does so despite the stable stratification, the effectiveness
of which is much reduced by the rapid heat exchange between a displaced fluid parcel and its
surroundings, this being permitted by the size of the thermal diffusivity « (Yih 1961). In §6 we
demonstrate how in the presence of an azimuthal magnetic field, the (r, z) structure of which is
largely irrelevant in the present context, instability can occur in a non-axisymmetric manner if
there is more than a very weak radially outward decrease of angular velocity Q.

Consider first the unstratified case VE = 0. In the theory itis assumed that the magnetic energy
is small compared with the rotational energy, i.e. € = V2/0Q%2 < 1, and the differential rotation
rQ-1902/0r is also assumed to be small compared with unity. A negative radial angular velocity
gradient of only order ¢ is sufficient to give rise to instability. The most rapidly amplifying mode
has an azimuthal wavenumber m ~ (—e12-102/0r)} and a growth rate, which is independent
of the magnetic field strength, of order —r02/dr. Thus if 2 decreases significantly with radius
these instabilities develop, in an astrophysical context, very fast indeed and with large azimuthal
wavenumber (in contrast to the Goldreich-Schubert instabilities, the fastest of which have large
meridional wavenumber). This magnetically aided instability of differential rotation occurs only
if the magnetic field and the electrical conductivity of the fluid are not too weak, and the above
growth rate (estimated on the basis of a perfectly conducting theory) will clearly exceed the rate
(O(ym?/r*)) at which the disturbance would otherwise decay due to ohmic dissipation only if

Vz/20n 2 1. (1.7)

If the gas is strongly thermally stratified, in the sense that 22 < N2, fully three-dimensional
and almost adiabatic instabilities of the above kind are suppressed by buoyancy forces. There are
two ways, however, in which the instability may still occur. The first is via almost horizontal
motions, which experience practically no buoyancy force, and this happens if 2 decreases with
distance from the rotation axis along a (almost spherical) surface of constant (specific) entropy.
The second involves (spherically) radial motions as well as horizontal ones and works byadoubly
diffusive reduction of the effectiveness of buoyancy forces if the thermal diffusivity « is sufficiently
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MAGNETIC INSTABILITIES IN STARS 463

larger than the magnetic diffusivity 9. Thus instability of this latter kind occursif, in addition to the
previous requirements — 2-1702/0r 2 ¢ and (1.7):

2
—r%i—>g'yN$ (1.8)
(cf. (1.3)).

It may be helpful at this point to contrast these magnetically aided differential rotation insta-
bilities with a non-magnetic instability recently discussed by Zahn (1974, 1975) and Jones (1977),
which is also essentially non-axisymmetric and may also occur for only small deviations from a
state of uniform rotation. The basic mechanism is that of parallel flow or shear instability, and a
necessary condition for this when £22 € N2 and v = k = 0 is the following natural cylindrical-

geometry counterpart to the well known Richardson criterion (see, for example, Turner 1973,
ch. 4):
$(rdQ/dr)? > yN2 (1.9)

(Sung 1974; cf. Lalas 1975). Zahn (1974, 1975) applies the arguments of Townsend (1958) to
derive a condition under which there is sufficient energy in the shear flow for turbulence, once
generated, to be maintained, and this may roughly be expressed as follows:

d\% _ v
-] > - 2
(r dr) NKRecN,. (1.10)
Here Re. denotes the critical Reynolds number, of order 103, obtained by viewing the differential
rotation locally as a plane parallel flow and ignoring stratification. On the other hand Jones (1977)
derives a condition under which the flow is unstable to infinitesimal disturbances, and this may
roughly be expressed, for the sake of comparison, as follows:

(r%%)zzz(%]‘) (%) NZ. (1.11)

Here Uis a typical flow speed relative to a frame rotating with the mean angular velocity, L is the
length scale characteristic of the shear, and A is the horizontal wavelength. Thus the acfual
Reynolds number Re = UL /v, which may be enormous in a star, appearsin (1.11) in contrast to
the critical value in (1.10). Jones (1977) gives a full discussion of the complicated possibilities
implied by these differing criteria. Our reason for presenting them is to emphasize, by comparison
with the criteria listed above, that though they also refer to instability due to deviations from a
state of uniform angular velocity (rather than angular momentum),itmakes no essential difference
with these instabilities whether 2 increases or decreases with radius; the mechanism by which
they work can be adequately studied in a corresponding plane-parallel flow. By contrast, the
magnetically aided differential rotation instabilities such as (1.8), thoughrequiring nowhere near
as strong a gradient of angular velocity as is needed for Goldreich-Schubert instability, do reed
02/0r < 0, and have no counterpart in plane-parallel flow; the curvature effects are crucial.

The other instability mechanism which we examine in this paper arises from certain (7, z)
distributions of the azimuthal magnetic field itself, and the conditions giving instability are quite
different depending on whether the local region under consideration lies inside or outside a
critical radius given (somewhat implicitly) by

re ~ 2a2/g. (1.12)
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In the former case a fairly modest increase of magnetic field with distance from the rotation axis
causes instability, even when the magnetic energy is small compared to the rotational energy
(V2 < 2%?). The mechanism works equally well in an incompressible fluid such as the Earth’s
liquid core, and has been advocated as a possible explanation of the geomagnetic westward drift
(Acheson 1972). Outside the critical radius, which is perhaps the case of main astrophysical
interest, compressibility effects play an essential réle and instability is promoted by a decrease of
the magnetic field with height. The mechanism is that of ‘magnetic buoyancy’, an idea first
introduced as a possible explanation of sunspot formation by Parker (1955).

The essence of magnetic buoyancy is best seen by considering an isolated horizontal tube of
magnetic flux in a compressible gas. Dynamic equilibrium requires that the sum of the gas
pressure p and ‘magnetic pressure’ B2/2u be the same both inside and just outside the tube, so
bin < pout- If the temperature inside the tube is the same as that outside, the gas law implies
Pin < Pout, SO the tube feels lighter than its surroundings and tends to rise. The characteristic time
scale on which the tube does so, while distorting (Parker 1955), is O(H/V). In a number of
subsequent papers Parker has pursued these ideas under a variety of different physical assump-
tionst and has recently (Parker 1975, 1976, 1977) argued that magnetic buoyancy brings up an
azimuthal magnetic field of the order of 100G (1 gauss, G = 10~*T) from most of the solar
convection zone too fast for it to be regenerated from the poloidal (meridional) field by dynamo
action. He concludes that if the solar dynamo is to function at all it must be in the very lowest
levels of the convection zone.

Gilman (1970) pointed out that magnetic buoyancy might also be expected in stably stratified
stellar interiors, since the rapid radiative heat transfer would facilitate the instability mechanism
for modes of sufficiently short meridional wavelength by keeping the temperatures within indi-
vidual flux tubes at the ambient value. The idea is an essentially doubly diffusive one (7 < «)
akin to the examples presented above, but Gilman’s stability analysis in fact contains neither the
ratio 7/« nor the static stability N2; the limit 9/x — 0 is effectively taken by the device of dropping
the thermodynamic energy equation and taking the temperature perturbation at every point to
be zero, corresponding to a displaced fluid parcel instantaneously acquiring the temperature of
its new surroundings. Such a parcel experiences no conventional buoyancy forces so N2 does not
appear. The analysis was for a plane inviscid layer of vanishingly small electrical resistivity
(9 —0) under gravity g and in the presence of a horizontal magnetic field B(z). Gilman’s main
result was that the layer is unstable to disturbances of non-zero horizontal wavenumber £ (in

the direction of B) satisfying —(g/a® d (In B)/dz > k2,’ (1.13)

so that the essential requirement is simply a decrease of magnetic field with height, the most easily
excited mode having £— 0, i.e. indefinitely long horizontal wavelength. The case k£ = 0, the
counterpart of which in spherical geometry would be the axisymmetric case, requires separate
consideration, and Gilman & Cadez (1970) showed that instability of this two-dimensional kind
is only possible under the more demanding condition that the magnetic field decreases with height

Saster than the density, i.e. —d(Bp-1)/dz> 0. (1.14)

That non-axisymmetric modes are the most readily excited by magnetic buoyancy was under-
stood in terms of the dynamics of individual flux tubes by Parker (1955), and the otherwise
1 Parker (1971) is notable, in particular, for the discussion in §IV (¢) of the magnetically buoyént instability of

a horizontal layer in the case when pressure perturbations are negligible, corresponding to a sound speed a very
small compared with the Alfvén speed V. This is quite the opposite limit to that treated in the present paper.
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curious distinction between £ — 0 and £ = O revealed by (1.13) and (1.14) can also be understood
from Parker’s arguments. Of course in practice the azimuthal wavenumber m corresponding
to £ will be quantized so this feature does not arise. Cadez (1974) has investigated curvature
effects of this kind on magnetic buoyancy under a variety of conditions, for both isothermal and
adiabatic perturbations.

The magnetic buoyancy investigations in this paper, asin those of Roberts & Stewartson (1977)
and Acheson & Gibbons (1978), were triggered by Gilman’s extension of the above analysis
(locally) to a uniformly rofating spherical body of gas. He assumed that the most unstable modes
would be of short (formally zero) wavelength in the y-direction (i.e. northward), so that only the
component of rotation perpendicular to gravity (2sin @) would be significant. He examined in
detail the particular case of an isothermal atmosphere of constant Alfvén speed, i.e. Boc pi. In the
absence of rotation, we note, such an atmosphere does not satisfy (1.14) but is nevertheless
unstable to non-axisymmetric disturbances by (1.13). Gilman found that as the rotation speed
£ was increased the growth rates were reduced until when

V2/Q?H? < 8sin2 0, (1.15)

magnetic buoyancy instability was totally suppressed. We have pointed out above that for many
astrophysical situations of interest, V2 € £22H?, so it is important to know whether this suppression
of magnetic buoyancy by rotation occurs also in rather more general models.

Acheson & Gibbons (1978) retained Gilman’s assumption (equivalent to x = co) of instan-
taneous temperature adjustment (in fact taking an initially isothermal state so that 7" = constant
everywhere for all time), but included curvature effects, some investigation of finite ohmic
diffusion ( # 0), and considered arbitrary azimuthal magnetic field distributions B(r). They
focused attention on the rapidly rotating case (V2 € £%?) and their main result, when stated in
the context of a plane layer model, was that systems with magnetic field gradients slightly stronger
than in Gilman’s Bcc p¥ example were non-axisymmetrically unstable. The essential criterion
for instability was in fact (1.14), namely that for axisymmetric disturbances in the non-rotating case!

Roberts & Stewartson (1977), on the other hand, retained Gilman’s particular equilibrium
state (isothermal plane layer, B oc pt) but restored finite thermal diffusion (k # c0) and non-zero
ohmic diffusion (7 # 0). They concentrated on the case (1.15) in which rotation is sufficiently
large to suppress instability according to the k~! = 9 = 0 theory, and showed that the finite
diffusive processes make instability possible if the product k7 is sufficiently small, other parameters
of the system being held constant.

Part of the motivation for the present paper was the obvious need to see how the theories of
Acheson & Gibbons and Roberts & Stewartson are related. The answer is provided by figure 1
‘on page 493, which shows that each is correct in an appropriate region of parameter space and
also delineates those respective regions. The other motive, however, came from observing that
if k and # are viewed as being held constant the Roberts & Stewartson results imply (see §7) that
instability sets in when N2 (see (1.1)) exceeds some critical positive value, i.e. when the fluid is
sufficiently strongly stratified in a (so-called) ‘statically stable’ manner. This remarkable effect,
which Roberts had noticed somewhat earlier in a related incompressible system (see Roberts
1978; Roberts & Loper 1978), clearly called for careful examination. While I am unable in this
paper to offer much by way of physical explanation, figure 1 at least shows that the effect occurs
only in a limited region of parameter space and that for large enough values of N? the system is
stabilized by stratification, as one would intuitively expect.
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The above remarks indicate the main background against which our study of magnetic buoy-
ancy is set, but additional possibilities and complexities are implied, in my view, by the studies of
Schubert (1968), Tayler (1973) and Cadez (1974). The picture that emerges after the analysis of
§§2-8 is not, regrettably, a simple one, but nevertheless an attempt is made to summarize as
clearly as possible the main results on magnetic buoyancy instability in §9.

2. Basic EQUATIONS AND APPROXIMATIONS

The motion of a perfect gas of density p, pressure p and temperature 7" in the presence of a
magnetic field B is described by the following equations:

p(Qu/dt+u-Vu) = —V(p+3u~1B2) +u-1B-VB +pg* +F, (2.1)
dp/ot+ V- (pu) = 0, (2.2)
OB/ot=VA(uAB)—VA@#VAB), (2.3)

V-B =0, (2.4)

p=pRT, (2.5)

pey T/t +1-V)In (pp=7) = Fp+qu~(V A B)2+ V- (pcy &V T) (2.6)

(see for example, Roberts 1967, ch. 1). Here u denotes fluid velocity, ¢ time, # magnetic permea-
bility, g* gravitational acceleration, F viscous force (per unit volume), Z gas constant, ¢y specific
heat at constant volume, y the ratio of specific heats and Fy, is the rate of heating (per unit
volume) due to viscous dissipation. The magnetic diffusivity 9 is defined as (ou)-1, where o is
the electrical conductivity, and has the same dimensions as the thermal diffusivity « and the
kinematic viscosity .

Equations (2.1) and (2.2) express conservation of momentum and mass, respectively. The
Lorentz force (per unit volume) #=*(V A B) A B has been separated into two parts, one of which
is the gradient of the ‘ magnetic pressure’ 34! B2, The gravitational acceleration g* is prescribed,
thus excluding self-gravitational effects. In the equation of state (2.5) we shall treat % as a con-
stant, thus restricting attention to a gas of uniform chemical composition. The electromagnetic
induction equation (2.3) describes the way in which the magnetic field B changes as a result of
the fluid motion and ohmic diffusion of magnetic flux. Finally, the energy equation (2.6) shows
how the entropy of a moving fluid parcel changes as a result of irreversible processes, namely
viscous and ohmic dissipation and the diffusion of heat.

All three diffusivities », 9 and « are in general functions of the state of the gas, and for a dis-
cussion of this matter is an astrophysical context we refer the reader to Goldreich & Schubert
(1967) and Schubert (1968). While the diffusivities will therefore depend on position in the basic
equilibrium configuration, this will not complicate the stability analysis which follows, for two
reasons. The first is that we assume all diffusive processes to be so small (in a way to be quantified
shortly) that they have no significant effect on the basic equilibrium within the time scales of
interest. The second is that the stability analysis will be an essentially local one, in which short-
wavelength disturbances are considered. Diffusion of one kind or another may be effective on
these short length scales, but to describe such effects it then suffices to use the local value of the
diffusivity appropriate to the region under consideration. We shall now make these ideas more
precise.
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We shall study the stability of a gas rotating differentially with angular velocity 2(r, z) in the
presence of an azimuthal magnetic field B(r, z). Here cylindrical polar coordinates are being
used, and p, p and T are also functions of 7 and z. If all three diffusive processes are neglected,
the basic equilibrium configuration is constrained simply by (2.5) together with the r and z
components of (2.1), namely

A(p + 3y B?) [or = — B/ pr+ p( — g +2%), (2.7)
o(p+3p1BY) [0z = —pg}. (2.8)

Here we adopt the convention g* = (—g¥, 0, —g¥) for the components of g*, thinking ahead to
the case of a spherical mass of gas, for which both g and g as defined will (conveniently) be
positive in the northern hemisphere (while gi will be negative in the southern hemisphere). We
introduce also ‘apparent’ gravity

8= (—gr’ 0, '—gz) = (_g;k +'ero Oo —g;k): (2-9)
although it is very important to note that, unlike g*, this will not be derivable from a potential
unless 002/0z = 0.

An important constraint on the basic state emerges if we cross-differentiate (2.7) and (2.8) to

obtain
P

0
2 (5 -pe) - Lor-Lar. (2.10)
This is a magnetic equivalent of the meteorological ‘thermal wind’ equation (see, for example,
Hide & Mason 1975) and may alternatively be written
0 (32) 002 p op

52\ ) P o T ST 5 (2.11)

Unless the ‘apparent’ geopotentials and surfaces of constant density coincide there must be a
variation with z of either 2 or B (or both).
At this point is it convenient to define the local Alfvén speed

V= B/(up)t, (2.12)

the local isothermal sound speed, a= (2T)}, (2.13)
and the following nomenclature R = In (Q%1), (2.14)
| E =1n(pp), (2.15)
F=1n(B/pr), (2.16)

Q =1In(Br). (2.17)

The first three of these represent useful measures of| respectively (and per unit mass), angular
momentum, entropy and magnetic flux. It is easily shown that the basic balance equations (2.7)
and (2.8) may be written in the form

d 720Q 2
E)_rlnp+ @ or —%’ (2.18)
9 V29 \
a—z‘“/’““?‘ag --% (2.19)

41 Vol. 289. A.
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and these are quite useful, in particular for demonstrating the following alternative way of
writing the ‘magnetic thermal wind equation’:

V2 2ya?\0Q  0Q . OR 0E OF

= [(gr— - )32- ~gz§] HY R = G~y (2.20)
This relates the magnetic field and angular velocity gradients to the inclination between the
‘apparent’ geopotentials and surfaces of constant entropy (per unit mass). Note how even if B
and £ are independent of z, the magnetic field causes a non-zero inclination between the two,
unless Bocrt,

There are a number of natural dynamical time scales associated with the equilibrium con-

figuration above, namely
Q-Vr/V,r/a, and (r/g)}, (2.21)

where typical values of the various quantities are intended here. The first entry in (2.21) repre-
sents the rotation period, and the other three represent the time taken in crossing the system by,
respectively, an Alfvén wave, a sound wave and a particle falling freely under gravity. In order to
derive the most general dispersion relation appropriate to our present needs all these times are
regarded as of comparable order, ‘unity’, in the stability analysis which follows in §3, and dis-
turbances oscillate or grow on this one time scale. Further, the scale heights of the various basic
state quantities, such as density, angular velocity, etc., are taken to be comparable with the radius
rin the neighbourhood of which our local analysis is to be valid. On the other hand the perturba-
tions which we consider have very short wavelength (order A < 7, say) in the r and z directions,
but O(1) wavelength in the azimuthal direction. Thus differentiation of a basic state variable
with respect to 7 or z leads to a term of much the same size as before, while differentiation of a
perturbation variable with respect to 7 or z leads to a term bigger than before by a factor of order
r/A. In order, again, to keep the development as general as possible (given the constraints of the
local analysis), all three diffusivities », 9 and « are regarded as being of comparable magnitude
and such that the diffusion time scales based on the short meridional wavelength, A2/v, A%/n and A?/k
are O(1). The diffusion times based on the equilibrium state scale, r2/v, r2/y and r?/« are, there-
fore, very large in these same terms.

Having outlined the formal basis for the derivation of the local dispersion relation in §3, we
make three points about the way in which the analysis of this highly idealized model should be
viewed in the context of applications to a real star such as the Sun.

First, we have to note that in the presence of weak diffusive effects most distributions of angular
velocity, magnetic field and so on, satisfying (2.5), (2.7) and (2.8), will not quite satisfy the full
equations and will slowly evolve. Processes contributing to such evolution in a real star will
include, for example, ohmic decay of the magnetic field, Eddington—Sweet circulation currents
(see Mestel 1975; Mestel & Moss 1977), and ‘spin-down’ (see Spiegel 19725; Benton & Clark
1974) which would be enhanced by the effects of a weak poloidal magnetic field (see Loper 1976).
Any instabilities we may discuss must be viewed against such a background of other effects, and
clearly only those with sufficiently rapid growth rates will be physically significant.

Secondly, when we discuss instabilities in the absence of stratification, i.e. with VE = 0, it is
with a stellar convection zone in mind. While (2.18) and (2.19) may still hold individually to a
high degree of approximation, the magnetic thermal wind relation (2.20) obtained by cross-
differentiation is easily upset by the convective transport processes, and we would not wish to
restrict attention to distributions of £(r, z) and B(r, z) satisfying the VE = 0 version of that equa-
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tion. Thus in the non-magnetic case, for example, while the Taylor-Proudman-like constraint
of rotation is strongly effective when the convection is weak, convection at more super-critical
Rayleigh numbers drives a differential rotation which is distinctly z-dependent (see Gilman
1976; Durney 1976).

Finally it must be emphasized that the approximation of short meridional wavelength, A < 7,
is made primarily to facilitate analytical progress. It is true that the doubly diffusive instabilities
are often such that modes of very short wavelength possess the fastest growth rates, and the validity
of the A € rapproximation can in such cases be justified a posteriori. Instabilities which do not rely
on diffusive processes (but are, indeed, often somewhat hindered by them) may well not possess
this property, however, and we do not then suggest for a moment that the way in which they will
actually occur is necessarily with A < r. We do note that in such mainly diffusionless cases the
eigenvalue o in the stability equation (3.20) is dependent on the orientation of the meridional
wavenumber but viriually independent of its magnitude. There is nothing, therefore, in such cases to
suggest that the results of the local analysis should be inadequate as a qualitative guide to the
response of the system to large-scale disturbances. Indeed, in the special case of an incompress-
ible fluid with no diffusive processes it is known that a local analysis, when properly interpreted,
provides results in full qualitative agreement with the global theory (Acheson 1972).

3. THE LOCAL DISPERSION RELATION

We first make a few points about the way in which dissipation terms will enter the linearized
versions of (2.1), (2.3) and (2.6). The frictional term in the momentum equation is conveniently

written in tensor notation
Ou,

o (0w
Foo=— | e (=2 .Vu 3.1
2 axj l/"b (axj'l' axz) +UB 81,.1 ]: ( )
where pg and py denote the coefficients of shear and bulk viscosity. In view of the short wave-
lengths of the disturbances in the r and z directions, however, together with the various other
scaling assumptions outlined in § 2, it follows from the conservation of mass equation (2.2) that the
perturbation motions are to a first approximation non-divergent, i.e.

Ju,/0r +0u,/0z = 0 (3.2)

to first order in A/r. Thus the second contribution to (3.1) is smaller than the first by a factor of
order A/r. Further, since ug will vary (principally due to the variations of T") over a length scale of
order r, while u; will vary on a scale of order A, a similarly small error is committed by taking pg
outside the differential operator in (3.1). We are then left with the viscous term in the conven-
tional form of incompressible flow theory, F = ug V?u, and on neglecting certain contributions
arising from the cylindrical polar coordinate system, again with error of order A/r, we find that
for present purposes
F = pg(02/0r? +02/02%) u. (3.3)
Similar remarks apply to the ohmic diffusion term in (2.3), which is adequately replaced by
7(02/0r2402/022) b (3.4)

where b is the magnetic field perturbation.
In the energy equation (2.6) the viscous heating term Fy, is adequately replaced, in viewof (3.2),
by that appropriate to an incompressible fluid (see, for example, Batchelor 1967, p. 153), and
41-2
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when the right hand side of the equation is linearized and simplified according to the short-
wavelength approximation, it becomes

003, 000, 0B, 12, Oy ( o gf_)
2”57(‘6262%75)*'2’”‘ [az 5zt 73, (87 ]+p”V" taa) v (39

where 7] denotes the temperature perturbation. Itis noteworthy that with the scaling assumptions
discussed above, the first two terms are smaller than the third by a factor of order A/r, and will
therefore be neglected. The entropy of a fluid parcel will, in our analysis, change only by thermal
diffusion, and though essentially a consequence of the short-wavelength approximation this will
be particularly appropriate when, as in a typical radiative stellar interior, « is the largest of the
three diffusivities.

We now consider, then, small perturbations (u,, 4y, %,), (b,, bg,b,), p1, P, and T; to the basic
variables of the system, and it is convenient to use the notation

z Q2
veliZ, 20002 (3.6)

the latter representing rate-of-change as measured by an observer rotating with the local mean
angular velocity. Thus from (2.5) and (2.6) we have

bifb =pi/p+T/T (3.7)
d 0 0 T,
and (—12(;1—751) ( v3y Tl ) In (pp~7) = kV2 (T) (3.8)
while the 7 and z components of (2.3) give
(d/dt—4V?) (b,, b,) = (B/r) 0(u,, u,) /0. (3.9), (3.10)

To leading order in A /r equation (2.2) and the -component of (2.3) give the same result, namely
Ou,/0r +0u,/0z = 0, (8.11)

and independent information is obtained by eliminating the combination 0u,/0r + Ou,/0z
between them, whence

Uy, BB (0 ¢ ) (2
T —?]ng—p =7 207 ba+ba)!)—pr(u,-a-;+uzaz (,_Jr) (3.12)

Similarly, to leading order, the 7 and z components of (2.1) both give the result that the fotal

pressure perturbation is zero:
p1+p" Bby =0, (3.13)

and independent information is obtained by eliminating p, + x~1Bb, by cross-differentiation,
whence

d o %_%)_ Quy _ [Ba 0b, abz) 2B b, oy Iy
’O(dt—vv)(az or 2 oz 760(62 o) Tz T8 Ty (3.14)

In view of (3.13) and the scaling in the azimuthal direction, the 6-component of (2.1) becomes

(72wt (g +gg) (@) = o [T 3 () (8] 3.19
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Equations (3.7)—(3.15) are nine independent linear equations for the nine independent vari-
ables (u,, ug, u,), (b,, by, b,), p1, P1, and T;. The final step is to replace all the coeflicients by their
local values at a particular position (r, z) and seek solutions in which all perturbation quantities
are a (local) constant multiple of

expi(lr+ml +nz— ot) (3.16)
where [ and n are O(A~') and m is an O(1) integer. The Doppler-shifted frequency, w = o —m,
naturally emerges as the important one, and it is convenient to define

2= L2yn?, (3.17)
GEgr_(l/n)gz: (3~18)
o 9 1d

the last of these being proportional to the spatial rate of change along ‘crests’, i.e. lines of
constant phase, in the meridional plane. The dispersion relation that must be satisfied if
equations (8.7)—(3.15) are to admit solutions of the form (3.16) is found, after a great deal of
algebra that is omitted here, to be

Ve —22712+(w+iv2) g_g(“""i’“z)} m _6£+§_P_‘_____w oF
r N wy +iks? w+iys2 0k Oh  wy+iks? Ok

52 N G G OE - N
+ [nz(w+1vs —w+i7732)_a)y+i/<s2 ah] [(w+1vs ) (0 +i7s?) — =
V2 /([ w+iks? - 0 . mV? 0@
+ a? (wy+i/<s2) o(w+ivs )] [571 (r?) +w+ins2 ah]
20 .o, V2 0+iks? mV?(2 G [ w+iks?
% [7 {a)+1773 +_a—5 (a)y+i1<s2) a)}+ r2 {7*@(5—7—-!———1/?2)}] = 0. (3.20)

In view of the remarks made toward the end of §2 we note that the magnetic thermal wind
relation (2.20) has not been used in the derivation of this equation. Before we explore its properties
in various limiting cases it is worth noting what we obtain if the magnetic field is zero, i.e. V = 0.
The dispersion relation then becomes

eraze/a/z+ GOE/oh
w+ivs? oy +iks?

2
- (w+ivs2)i;—2 = 0. (3.21)

A most important feature of (3.21) is the absence of the azimuthal wavenumber m, so that the
equation is indistinguishable from that for purely axisymmetric disturbances. Thus any non-
axisymmetric instability which we extract from (3.20) will owe its existence, in part at least, to the (originally)
azimuthal magnetic field. Our scaling assumptions have filtered out all non-magnetic non-axi-
symmetric instabilities such as the shear ones described by (1.9)—(1.11), for example. Sound
waves have also been filtered out by the scaling assumptions, which result in motions that are
to a first approximation divergence-free.

4. AXISYMMETRIC INSTABILITIES

When m = 0 equation (3.20) simplifies to
2 2 2 152
I:;_cl_z (0 +is?) R raR/ah] [a) +im2+1/—( o +1Ks ) w]

 +ivs? a? \wy +iks?
. 2V2 1 0E [2 G[w+iks? oF
- oy 4 2 T — Y (2T (YIRS 2l _
[G(w+ms)+ r w] wy +1iks? Oh [r az(a)y+i/<s2)]V oh 0. (1)
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We shall first examine axisymmetric instability on the assumption that diffusive effects are
. '
absent,i.e. v =9 =k = 0. '

Diffusionless theory
In place of (4.1) we then have the much simpler stability equation
52 vz o8 V3 oR 2V OF 2_y_a_2) VeoF
nz(1+)—/——)w Y% ( 2) ah+(G+ )a;ﬁ(G T (4.2)

In view of (3.18) and (3.19) the right hand side is an expression quadratic in [/, and for stability
we must clearly have w? > 0 for all [/n. The requirement that ax?+ bx + ¢ be positive for all x is
casily shown to be equivalent to the conditionsa > 0, ¢ > 0 and 42 < 4ac, and application of this
result to the right hand side of (4.2) leads to the conclusion that the system is dynamically
unstable to axisymmetric disturbances if any of the following three inequalities is satisfied:

AP 2V 10E (g, 2a%\ V2OF
(1 +5/—-)Q ra +(g,+—r-);/5+ (?__7’_)_-(1—25 < 0, (4.3)
OE V20F
z(a_z+_a—2$) 0, (4.4)
o [(REE_IROE 2V (BBOE_DEUR) T (ORAF_OROF)] 15
vz o o\ o oroz 0z or ' (4.

To obtain the final one, (4.5), a certain amount of algebraic manipulation is involved. It is
convenient, having written down the expression ‘5% < 4ac’, to subtract from both sides that
quantity which will change the left hand side from 42 to 2, where d is identical with b except that
g, is replaced, where it occurs, by — g,. One can then show by using the basic balance equations
that d = 0, whence (4.5), and it is helpful to establish from (2.11)—(2.20) the supplementary
equations

oE V20F 1 272 72\ 0

o @ or -a_z(g’-’- r ) 7(1+ya2) Orlnp’ (4.6)
OE VROF g, y
az+a2 0z _55—/(1+ya2)azlnp’ (4.7)

for this purpose.

We shall throughout this paper suppose that the entropy (per unit mass) is a non-decreasing
function of height (so that g,0E/dr and g,0E/0z are non-negative), thus excluding thermal
convection. The instabilities we consider are due to differential rotation and/or magnetic field
gradients. Equation (4.3) clearly shows how axisymmetric instability of the former kind may
arise if the angular momentum (per unit mass) decreases with distance from the rotation axis.
Magnetic instability, on the other hand, may be of two quite different kinds, depending on
whether the region under discussion is located inside or outside a “critical radius’

re = 2ya*/g,. (4.8)

In the former case an increase of magnetic flux (per unit mass) with radiusr (i.e. 0F/0r > 0) makes
the third term of (4.3) negative and promotes instability, while outside the critical radius it is
a decrease of magnetic flux with r that promotes instability, essentially by the mechanism of
‘magnetic buoyancy’.

Typical values of the basic parameters in the (convectively stable) radiative zone of a star (such

as the Sun) appear to be such that
V< Q< a? S gr, (4.9)
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so that we may pay little regard to (4.4) as a source of instability and (4.3) may be simplified a

little: oR graE+ (&_%‘1_2) V2oF

& ar+y or r ) a®or

(4.10)

Ifasignificant radial decrease of angular momentum is present, therefore, an azimuthal magnetic
field can do little to stop the instability in the parameter régime (4.9). The buoyancy restoring
forces associated with the vertical entropy gradient, on the other hand, apparently suppress
centrifugal instability most effectively, essentially since 2% < g.

We must not ignore (4.5), however, which in the parameter régime (4.9), reduces approxi-
mately to its non-magnetic form, giving instability if

OROE OROE
gz(?);-éz—-é-z-—a—r‘)<0, (411)

i.e. if the specific angular momentum decreases outward along a surface of constant specific
entropy. The reason is that the stratification has no stabilizing effect whatsoever on fluid motions
which take place entirely along isentropic surfaces (cf. Goldreich & Schubert 1967; Roxburgh
1975); for these motions, in view of (3.2), [/n is such that 0£/0k = 0, and when V = 0 one may
in fact derive (4.11) directly from (4.2) by asking in what circumstances the right hand side is
negative for such modes. There is, however, a further subtlety. We recall that a non-cylindrical
rotation law 02/0z # 0 will, by (2.20), be accompanied by an inclination between the apparent
geopotentials and the surfaces of constant specific entropy. It may be possible, therefore, for
fluid motions to even make the term G 0E/0k negative (implying a concomitant release of potential
energy) by taking place on planes sandwiched (angle-wise) between the (nearly coincident)
isentropes and apparent geopotentials. Even in the non-magnetic case the theory of such ‘baro-
clinic’ instabilities is quite complicated; the simple criterion (4.11) was due originally to Heiland
(see Wasiutynski 1946, ch. 2; Eliassen & Kleinschmidt 1957, pp. 64-72), but at large Richardson
numbers such as in the solar radiative interior one must certainly expect non-axisymmetric
instabilities of this kind to occur much more readily (Eady 1949; Hide & Mason 1975). Thus,
as with thermal convection, I postpone a discussion of the magnetic baroclinic instabilities
evidently contained in (3.20) to a companion paper, while referring the reader to Gilman (1967)
and Braginsky & Roberts (1975).

Finally, consider diffusionless axisymmetric instability due to a magnetic field gradient.
Taking £ = constant as the prototype of a centrifugally stable angular velocity distribution we see
by inspection of (4.10) that in the ‘ weak magnetic field” parameter régime (4.9), the rotation and
stratification act together to make such instability quite impossible.

Viscous and magnetic effects on Goldreich—Schubert instability

We now restore all three diffusive processes, and on setting w = ig in (4.1) we obtain a quartic
in ¢ with real coefficients. A necessary condition for the stability of the system is therefore that the
constant term be positive, that is

OR oF v 242\ V2OF zs“

Q% rahtx Gah 77(G—- )a2 P > 0, (4.12)
for all disturbance orientations //n. The ratio of the first term to the last is of order £22A%/»2, where
A is a characteristic wavelength, and this quantity is truly enormous in stars unless A is excep-

tionally small (e.g. 1 m). We shall therefore neglect the final term of (4.12) in what follows, and
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when written out in full, using (3.18) and (3.19), the left hand side of (4.12) is an expression
quadratic in //n. By the same procedure as in the previous subsection we thus find that the system
is diffusively unstable to axisymmetric disturbances if any of the following criteria are satisfied:

OR v OE »V? 24%\ OF
2 r + g 6r+7ﬁz—2—(g ) o <0, (4.13)
0E kV?20F
z(—a-'z-ﬁ"?;;z-a) (4.14)
1g, |2 oo a_Ra_E_%a_E) ?_V_zkz(@@_af”) vV r(%%’_%@)
8|k Or 0z 0z Or r kp\Oroz 0z or] 9 a2 oroz 0z or
OR v OF v OE vV? 20N\ OF v V2 0OF]2
2y —_ —— ) — — — —_
[Qraz—‘_/cg’az x5O ﬂaz( r )Gz nazgzar} - (415)

Itis of interest to first consider the non-magnetic case V = 0, in which case (4.14) will certainly
not be satisfied, since the system is supposed statically stable, while (4.13) and (4.15) reduce to

OR v OF
— 02 —_— —
Q2 Pt faw (4.16)
oR v g, (OROE OROE
and (1—7 ) (az) >4zm(m—z”a7a7)- (4.17)

The thermal wind equation (2.20) has been used here to eliminate the entropy gradient on the
right hand side of (4.15). For comparison we note that the corresponding adiabatic criteria (4.3)
and (4.5) are, when V' = 0, OR g,aE

— Q% — Frie y o (4.18)
0 @%‘—6—}2%‘ 4.19
#F\oroz oz or) (4.19)

In the limit v/k -0, (4.16) and (4.17) reduce to the well known criteria due to Goldreich &
Schubert (1967) and Fricke (1968), namely that the system is secularly unstable if

either —OR/Or>0 or OR/0z# 0 (or both). (4.20)

When v/« is small but non-zero the stratification exerts a stabilizing influence, according to
(4.16), albeit a very weak one compared with its influence on adiabatic perturbations (cf. (4.18)).
This is because when v < « there exist motions with either an appropriately long time scale or an
appropriately short length scale that heat exchange between a displaced fluid parcel and its
surroundings effectively annuls the stabilizing buoyancy forces, while viscous diffusion is too
weak to significantly reduce the effectiveness of the destabilizing angular momentum gradient.
This particular ‘doubly diffusive’ instability mechanism wasfirstnoted inarelated incompressible
flow problem (with 0£2/0z = 0) by Yih (1961), and is in turn a simple analogue of the classic
instability which can take place when (light) hot salty water overlies (heavy) cold fresh water, by
virtue of the difference in diffusivities of salt and heat (see, for example, Stern 1960; Turner 1973).

Turning now to (4.17) we see that a decrease of angular momentum (per unit mass) with
distance from the rotation axis along a surface of constant specific entropy automatically leads to
instability; the mechanism here has nothing to do with double-diffusive effects but simply involves
fluid motions confined to isentropic surfaces, and was discussed in the previous subsection.
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Finally, given an angular momentum increasing with r and along isentropic surfaces we still have
to ensure, according to (4.17), that 02/0z is not too large if the system is to be stable. In the stellar
situations which we envisage ¢ > 2% and the entropy gradient is very nearly aligned with gravity,
so a good approximation to (4.17) is, with v < «:
r0\2 2g,v . 0 -
(?2_6;) > m;r}VE[ sin @—a-@ln)(Qsm o), (4.21)

where @ denotes the polar angle.

If we consider the entropy scale height to be comparable with the local radius, which is true for
example in the solar interior, the extent to which the Goldreich—Schubert criteria (4.20) are good
approximations to (4.16) and (4.17) clearly depends on the dimensionless parameter

Y&

o =-
K 02’

(4.22)

agreement between the two sets being best when « is small. In particular, according to (4.21)
instability due to variation of 2 with z will only arise if 7£2-10£2/0z exceeds some definite value of
order a}. The way in which this comes about may be simply seen by inspection of the pertinent
quadratic expression in (4.12):

OR [OR\ v [ OF [OFE

(=) D (o —Co ) = ==
@ r( o n ’()z) + K (g’ ngz) ( or n ﬁz)' (4.23)
If |0R/0z] < OR/0r ~ 1 instability will only occur for disturbance orientations having a large
value of [/n, i.e. |(1/n) R /02| % 1; (4.24)

otherwise the stabilizing effects of the radially outward increase in angular momentum prevail.
A good approximation to the buoyancy term in (4.23) is then the contribution guadratic in l/n,
whence //n must not be too large or the stabilizing effects of stratification prevail. For instability
we need, in fact, R !

0z n

and combining (4.24) and (4.25) we obtain (0R/0z)% X «.

Goldreich & Schubert (1967) derive their criteria by taking the limit »/k — 0 in (4.23), thus
ignoring the second term. Fricke (1968) effectively derived (4.21) (see his equation (3.33)), but it
appears to have been totally disregarded in the subsequent literature (e.g. Fricke 1969; Fricke &
Schubert 1970; Spiegel & Zahn 1970; Fricke & Kippenhahn 1972; Zahn 1974; Roxburgh 1975)
where one invariably finds the criterion 0£2/0z # 0. Our point is simply that it is dangerous to
interpret this criterion too strictly, the key quantity « being the product of a small number
(v/k) and a large one (g/£2r). Whether or not « is small will depend crucially on the particular
system under consideration. Taking v/k ~ 10=% and g/£% ~ 10* for a moderately rotating solar
interior (see, for example, Spiegel 1972 ), « is small, O(10~2), but even here a 10 %, change in £
as one crosses the zone in the z-direction might well be stable, on the present theory, at least.

The question of whether an appropriate toroidal magnetic field can suppress the Goldreich-
Schubert instability has been considered by Fricke (1969), who assumes that stratification effects
have been wholly annihilated by fast thermal diffusion (formally « = 00). He takes v =5 = 0
and thus concludes, roughly speaking, that magnetic fields increasing outwards and satisfying

V3 (Q/g)ta (4.26)

Q2%

14
> -
K

~

, (4.25)

42 Vol. 289. A.
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are needed to stop the instability. It is clear from (4.12), however, that when » < 7, this is a
considerable underestimate of the magnetic field required, for the ohmic diffusion diminishes its
effectiveness in the same way that x annihilated that of the stratification. Thus, following Fricke
by letting xk =00 in (4.13), we find instability if

2 2
oR vV(r 2a)6F<O’ (4.27)

Cre @\ &) E

and this means that magnetic fields stronger than (4.26) by a factor O(y/v)%, and increasing
outward (for r > r¢), are needed to stop the instability.

Multiply-diffusive magnetic instabilities

Outside the critical radius r. magnetic fields decreasing with r promote instability, of course, by
magnetic buoyancy. We have seen that on a diffusionless theory, strong stratification and rapid
rotation prevent such an instability, but here again multiply-diffusive effects, this time of a
somewhat novel kind, can come into play and render it possible provided the diffusivities are
sufficiently disparate. This part of the paper is presented in the appendix under joint authorship
with Dr M. P. Gibbons.

5. NON-AXISYMMETRIC INSTABILITY; THE LOW-FREQUENCY APPROXIMATION

Experience of related non-axisymmetric problems in the diffusionless (» = % = k = 0) and
incompressible limit (Acheson 1972) leads us to expect little in terms of concrete and practically
useful results except in two limiting cases. The first is that of zero rotation, £ = 0, which we
investigate in §8. The second, fortunately, coincides with the parameter régime apparently of

most astrophysical interest:
V2 Q22 < a? 5 g, (5.1)

and is a ‘rapidly rotating’ one from a magnetohydrodynamic point of view. Provided the differential

rotation is weak in the sense that
r(0/0r,0/0z) In2 < 1 (5.2)

we anticipate that instability may occur with frequency and growth rate small enough that
|w|2 < m2V2/r2. (5.3)

If we approximate (3.20) accordingly, still allowing for as wide a variety of diffusive effects as
possible by regarding |w|/s? ~ v ~ 5 ~ k in the process, we obtain

W[_’E_?Lﬁ@_.ﬁ_ﬁ@ mzvz[g mv= G O
r  |o+igs20h 0k wy+iks2 0k r2 | n2r2(w+ins?)  wy+iks2 Ok

2 2 iks?
—(2!27-!— my OQ)[ (w+iys )+—@K{g—€(m)}]——0 (5.4)

w +iys? Ok 7 a?\wy +iks?

Notably, the viscosity v does not appear in (5.4); this is not surprising in view of studies of
similar low-frequency instabilities in incompressible fluids, where v has to exceed 3 by a factor
of order 22%2%/V?to have much effect (Acheson & Hide 1973, p. 178). It turns out to be quite
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instructive to multiply (5.4) by w+iys?, arrange it in the form of a quadratic equation for
Q(w+ins?) and ‘solve’ it, despite the fact that the result is an implicit expression for w:

w = [£+g(w+im2)_é+ iks? 10E|mV?
T lya? " @®\wy +iks?) 1 wy+iks?y Ok | 40Qr
g P [(G (e A e v _on
et [ a?\wy +iks?) r 4 O0h  wy+iks? 0Oh
m*V2s% Vi3t (16_«1)2 (a)+i1;s2 ) G@_l_i_‘ 3 5.5
r2 n? (wy-+iks?)2\a Ok wy+iks?) Ok " (5-5)
We have used here the following identity, which may readily be established from the basic
balance equations (2.18) and (2.19):

V2\0Q OF 10E 2 G
(++5a) 3 = 5y e *0

0
2y — 2
+ 02 fa/lll’l.Q +

although the V2/ya? part is consistently neglected, in view of the approximations above stemming
from (5.1). Indeed, all (5.6) is actually then saying is that the basic balance is almost hydrostatic

in the parameter régime (5.1):
0 9 r &
(6?’ &) Inp~ - (a—z a—z) (5.7)

This has allowed us, at one convenient point in deriving (5.5) from (5.4), to express the entropy
gradient in terms of the temperature, or isothermal sound speed gradient:

%ﬁl—gz (y—l)a%+y%(lna2). : (5.8)
We emphasize that the more delicate ‘magnetic thermal wind’ balance (2.20) has not been used
anywhere in the non-axisymmetric analysis so far.

By substituting (5.5) into (5.3) we find a useful set of conditions under which our pursuit of a
‘low-frequency’ instability has been a self-consistent procedure. They are, in addition to (5.1)
and (5.2):

72 P2t mEVe

em<b F<mEr <l (5.9)
w+igs® | OE .
and i O < (5.10)

The first two of these will turn out to be comparatively innocuous, but when the fluid is strongly
stratified (N2> 22), the condition (5.10) may evidently be satisfied only if the motions are
sufficiently horizontal or sufficiently effective doubly diffusive mechanisms are at work.

Before going on to discuss adiabatic instabilities of the above kind in § 6, and fast-heat-exchang-
ing instabilities in §7, we emphasize their essentially non-axisymmetric and magnetic nature. If
either m = 0 or ¥V = 0, (5.3) cannot possibly be satisfied and (5.5) has no validity. Another
important point to bear in mind is that there could be ‘high-frequency’ non-axisymmetric
instabilities for which (5.3) would be false, and which would therefore go undetected by the
present approximate method. The results in the appendix (especially (A 11) and (A 20)) on
diffusive axisymmetric instabilities suggest that this will only be the case if the viscosity (which
plays no significant part in the low-frequency instabilities (5.4), as noted above) is very small,

42~-2
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ie. v/y S V?/2%2 This inequality is unlikely to be satisfied in the astrophysical applications of
the theory which we have in mind, but further work will be needed before high-frequency
instabilities can be ignored with confidence.

6. NON-AXISYMMETRIG INSTABILITY, ADIABATIC MODES

For modes only weakly affected by diffusion, with |w| > #s? and || > &s2, (5.10) can be
satisfied in the parameter régime (5.1) only if either («) the temperature gradient is almost adia-
batic or () the motions are almost entirely horizontal, in which case G & 0 because of the fact
that the motions are almost non-divergent, i.e. lu, +nu, ~ 0 (see (3.11)).

Adiabatic temperature gradient
We shall consider first the case when 5 = k = 0, and (5.5) then reduces to

_ (G _2\mV2 mV[(G 2\ ,0F 0 . m2V2fi]%
w“(ya2_7)@7i29r[(§a'é ;)Vah+gfah(ln9)+ e (6.1)

The expression in square brackets is quadratic in //z, and by a now familiar procedure we con-
clude that the system is unstable if either of the following criteria is satisfied:

0 . 2 OF _ m2V?
_era_rlngz_(a./gp_;) Vza e (6.2)
2 2]72
&V 6F>mV (6.3)

v a? 0z r2 -’

For the present we shall isolate differential rotation as the instability mechanism by taking the
magnetic flux gradient as zero. According to the axisymmetric criterion (4.3) a decrease of
angular momentum (per unit mass) with radius is then needed for instability. The criterion (6.2)
for non-axisymmetric instability in the ‘rapidly rotating’ régime (5.1), on the other hand, reduces
to

—ro(lnQ2) /or > V2/0Q%? (6.4)
when one notes thatm = 11is the mode most easily generated. Evidently a tiny decrease in angular
velocity with radius is sufficient for non-axisymmetric instability! Although the magnetic field
appears to be playing a stabilizing role in (6.4) it is very important to note that it is only due to its
presence that we have thisinstability; the growth rate, according to (6.1) evidently decreases with
V and vanishes when V is zero.

One can easily estimate growth rates from (6.1); by some elementary differentiation we find
that for a given super-critical angular velocity distribution the maximum growth rate is §r|V2|.
This is attained by a mode having

22 a0 _m( raQ)%

e =" "Ty\ T (6.5)

i.e. with ‘crests’ aligned with V2. We refer to these as ‘estimates’ because no account has been
taken in their evaluation of the fact that m ought really to be an integer. Their accuracy will be
best when the angular velocity gradient is highly super-critical so that, according to (6.5), m is
large (but, note, not so large that the second of (5.9) would be violated). Note that the instabilities
take the form of propagating waves, and since in any application of the present analysis to a


http://rsta.royalsocietypublishing.org/

A

'\

A
J= \
9

THE ROYAL A

/|
AL

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

A
N \
JA
AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MAGNETIC INSTABILITIES IN STARS : 479

stellar convective envelope we anticipate a rather small scale height, a?/g < r, the azimuthal
propagation speed of the most rapidly growing mode can be written

o vz 1 02 /0z
Thus the amplifying wave propagates east or west relative to the local rotation according as the
angular velocity decreases or increases with height. When the 2-gradient is only slightly unstable
by (6.2) this propagation speed significantly exceeds (by a factor O(gr/a?)) the deviations of the
fluid from uniform rotation.

With only the caveat, therefore, that our approximation procedure requires the angular velocity
gradient to be weak in the sense of (5.2), very rapidly growing instabilities will quickly accompany
the establishment of an angular velocity distribution which decreases more than a very small
amount with radius.

We turn now to the magnetic flux gradient instabilities, and confine attention for simplicity
to the case of uniform rotation. Comparing (6.2) with the corresponding axisymmetric result
(4.3) we see that exactly the same remarks about the types of field distribution which promote
instability (i.e. 0F/0r < Ooutside the critical radius 7, = 2ya?/g,, 0F/0r > 0inside) still apply; the
essential difference is simply that the enormous stabilizing term due to rotation in (4.3), 40?2
when the rotation is uniform, has completely disappeared and been replaced by a much smaller
new term on the right hand side of (6.2). The reason is that the physical origin of the 422 term
was the conservation of angular momentum of axially symmetric fluid rings; in the present
context a ring does not remain axially symmetric when the system is disturbed, the magnetic field
lines threading it are distorted, and an azimuthal component of Lorentz force arises which breaks
the angular-momentum-conservation constraint, thus facilitating instability. A comparatively
modest amount of work is, however, required to twist the field lines against the resistance of their
own tension, and this is what the right hand side of (6.2) represents (see Acheson & Hide 1973,
pp. 184-188).

Turning now to (6.3) and comparing it with (4.4) we see that a decrease of /' with z (or, in the
southern hemisphere, with — z) can again cause instability, but axisymmetric modes are evidently
more easily excited by this mechanism. The physical reason is clear: rotation exerts no stabilizing
influence at all on the modes (I/n—>0; see (4.2)) to which (6.3), taken in isolation, refers, for
they do notinvolve radial motions. There is nothing to be gained in this case, therefore, by twisting
the field lines, for this only requires an additional expenditure of work.

As far as estimating growth rates and phase speeds is concerned the fully three-dimensional
case is rather complicated, and we confine attention now to a cylindrically symmetric configur-
ation and the equatorial plane, i.e. g, = 0. Then (6.1) becomes

mV?*[g 2 g 2\dF m2s?\}
© =30 [Wz ; i{(;a—z‘r) dr+r—2n_2} ] (6.7)
and it is easily shown that the maximum growth rate is
V2 (g 2\dF
~1olie )@ (6-8)
this being attained by a mode having //n = 0 and
2= 12 _&__2_) dr
m ir (7’42 S (6.9)
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480 D.J. ACHESON

We finally note that the frequency of these waves is typically comparable with their growth rate,
and the azimuthal direction of propagation is westward inside the critical radius but eastward
outside the critical radius, as one typically would be in the convective envelope of a star, where the
scale height is rather small.

Strongly sub-adiabatic temperature gradient

In this case almost diffusionless modes can be unstable only with almost horizontal motions.
We thus set 0E/0k ~ 0 and G = 0 in (5.5) (since, by virtue of (5.1), VE and g must be almost
parallel in the equilibrium state) and //n & tan @. In this way we obtain

Ve

W= ———
OQr?

2 22
—1iys? +m__V [tan@{292iln!2 2V OF} mrl/

%
—_——— 2
350, 6 arr sec 9] (6 10)

where s* = 4n2/A%, A being the meridional wavelength. Thermal diffusion plays no part at all, and
instability occurs if

(6.11)

0 V2oF S m2l2 402222 (2m\4
00 ’

—02 s gect@ T (2R
2tan@[ 0 (lng)+r268 2 sec O+ e (X

It therefore sets in first for A as large as is possible compatible with whatever constraints are
appropriate,T and we shall denote its maximum value by 2d. If

€ = (V2/2Q9) (d2/r?) (6.12)
is large, diffusive effects are unimportant in determining the marginal stability point, and insta-

bility first sets in when

2 2
2tan@[—926%(1n9)+ v OF] v

2 s L gec?
736 | > 525 o (6.13)

for the mode m = 1. If the ohmic diffusivity is high enough, or the field small enough, that % < 1,
however, we find by differentiation that instability first sets in when

0 V20F  4Qnyn?
o AN Il AL
2tan9[ Q a@an+ - 6@] > — sec O (6.14)
for the mode m = (nr/d) (227 cos O/ V2)1. (6.15)

Clearly if ¢ < 1 much stronger gradients of angular velocity /magnetic flux than predicted by the
diffusionless theory are necessary for instability, and when it does occur the azimuthal wave-
number m is much larger. We note in particular that when % < 1 the magnetic instability is
unlikely to occur, since from (6.14) it requires 0F/00 > 1.

From (6.13) we see that when % > 1 instability due to differential rotation occurs if

—0(In 2) /060 > (V?2/0Q%?) cosec 20, (6.16)

i.e. if the angular velocity decreases slightly with r along a spherical surface. The maximum

growth rate is roughly
—4sin©0R2/00 (6.17)

+ We could somewhat artificially introduce spherical boundaries at r and r+d, where d < r, but this really
only postpones the usual problem with all local analyses of this type of what is the largest allowable value of A. It
should certainly not exceed a scale height, for example, if the analysis is to be self-consistent.


http://rsta.royalsocietypublishing.org/

'\
/\
=0\

Y |

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

y \

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

AL A

A A

N

0\

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

MAGNETIC INSTABILITIES IN STARS 481

and occurs for an azimuthal wavenumber

=%’(—%9%)% 56 (6.18)
although the mode most easily generated is m = 1.

Instability due to a magnetic flux gradient occurs, provided € > 1, if B2/tan @ sin2 @ increases
with r along a spherical surface, and again the mode most easily generated ism = 1. The mechan-
ism is not, of course, magnetic buoyancy, and the kinetic energy of the perturbations comes
directly from the magnetic energy of the field itself. The maximum growth rate is roughly

d B
cos @ tan @agln (———) (6.19)

Ve
2072 sin @

and occurs for an azimuthal wavenumber

tan® 0 B \\}
- {secz@@ln (sin @)} ? (6.20)

although this is again only a rough estimate, because m ought to be an integer.

7. NON-AXISYMMETRIG INSTABILITY BY FAST HEAT DIFFUSION

Even with a strong stratification such that N2 > £2 it may be possible for three-dimensional
(i.e. not purely horizontal) motions to satisfy the inequality (5.10), which is necessary for the
validity of our low-frequency approximation procedure, provided that |w| < «s2 Fluid parcels
then rapidly adjust their temperature to that of the surroundings, thus annulling much of their
buoyancy. Equation (5.5) reduces to

2772 ¢2
=(9—-2-+16“)’"V im2+mV[(G 2)V?E+Qr—(1 ngz) 4 V8

az r aokh =20y oh oh r2 n?
L (1)l 28!
Gak+V(aah w2l (T

and the important inequality (5.10) may be conveniently written

|lo| 22 g &2

=<7 < (7.2), (7.3)

We seek the state of marginal stability, for which w is real, and introduce X and Y by writing
(7.1) in the form

mV iw 3
w—Y+ins? = i@_(X_EEVN%) , (7.4)
where we have defined N3 = (G/y) OE/0h. (7.5)

Squaring both sides of (7.4) and taking real and imaginary parts we find

(0 V)22t = (m2V2/40%%) X (7.6)
yNim2V2\
and w(1ju—————smrzm‘1 - (7.7)
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Using (7.7) to eliminate » from (7.6) and recalling the definitions of X and Y, we thus find insta-
bility if

0 G aF m2V2s2 40222t 10a
— 02 2) 2
Qe (In 2% ( )V BT B T ( ah)

G 2 10a 8% 2pist]2
2 =z V2
r 'yN (a2 ;T ah) / [ m2V2yN %J (7.8)

Assuming for simplicity that 4% ~ gr, we find on substituting (7.7) directly back into (7.2) that
g plicity y

(7.2) is automatically satisfied when
P2 <1, (7.9)

which we already has as a restriction from the second of (5.9). It is also instructive to record the
order of magnitude of the parameter which decides whether or not the modes are fast diffusers of

magnetic flux as well as of heat:
752 mN?  Qures?

|—&‘)‘| .QK.92+ o 7 (7.10)

In order to obtain some clear-cut results we confine attention to a cylindrically symmetric
configuration and the equatorial plane (g, = 0), and rewrite (7.8) in the following way:

Q2 ,dF s2 (sd)t  (rda\?
et —_— 2 — — B ——
4= ( & )r (In Q%) = ( ) dr m2n2+m2‘€2+ (adr)

1 1 474\ 2
+5_72(&_§+_51_‘_’) /(1+%), (7.11)

where the important dimensionless parameter D is defined as follows:

k V2 e (dz)

E’T]W’ %:m 7—2 ’ (7.12)

and we have noted again the definition of %, as by (6.12), for convenience.

The question we are asking is, given all the other local parameters of the system, what is the
smallest gradient A, whether of magnetic field or angular velocity, that will give instability? Three
general points are worth making: First, the minimum value of 4 is always achieved by taking / as
small as possible, merely by inspection of (7.11). Second, the smallest possible value of /is & /d, by
definition, so that in no circumstances can the combination sd be much smaller than unity (though
it could be large). Finally, we note that the last two terms of (7.11) owe their presence entirely to
finite thermal diffusivity and vanish when D = co. The first is positive and stabilizing while the
second is negative and destabilizing. It is natural, therefore, to expect quite complicated changes
in the stability properties of the system as we change D.

Infinitely fast heat diffusion; D = oo
The last two terms of (7.11) vanish and when % > 1 the value of 4 is minimized by taking

n=(¢2/2n¥n/d, m=1. (7.13)

(The fact that m is quantized is crucial here; a minimization of 4 with respect to both m and n by
differentiation attributes to m an impossibility low value, since € > 1.) This gives the instability

criterion
rda

4> 1+(—5) +0(¢-%), (7.14)
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and by (7.7) the frequency at the onset of instability is

(& _2 Ed_‘f)liz_
w"(a2 r+adr 20r° (7.15)

The criterion (7.14) is a slight generalization of that obtained by Acheson & Gibbons (1978),
who considered the case of uniform rotation and an isothermal atmosphere (in addition to
assuming k = o0), and also attempted to derive some results without resorting to the purely local
treatment of this paper. The essential result was that despite the rapid uniform rotation of the
system magnetically buoyant instability may still occur for a quite modest decrease of magnetic
field with radius 7, although a decrease of F, i.e. B/pr, is necessary (cf. (7.14) and (7.11)). The
instability has, from (7.1), a growth rate of order V2/£r? and takes the form of eastward-propa-
gating waves with azimuthal angular phase speed of the same order.

The study by Acheson & Gibbons (1978) extends that of Gilman (1970) in a way which has
already been discussed in the Introduction. The important point in the present context is that
both theories assume infinitely fast thermal diffusion, which totally wipes out the conventionally
buoyant effects that would otherwise occur and makes for great simplification because the
thermodynamic energy equation (2.6) is effectively dropped. Further, ohmic diffusion effects
are largely ignored (except very briefly in Acheson & Gibbons 1978). Gilman (1970) actually
presents an estimate, based on an elementary time-scale argument, for the approximate validity
of those assumptions: _

75?2 L || < ks?, (7.16)
which, applied to the rapidly-rotating system we are currently considering, gives
752 < V2/2r? < ks (7.17)

While intuitively (7.17) is certainly necessary, it can hardly be sufficient since it contains no
reference to the potential strength of the buoyancy forces which the large « is meant to be reducing.
From the following discussion it will become clear that the condition D > %2 is required for the
approximate validity of the ‘x = oo’ theories at rapid rotation speeds, and these theories therefore
fail, given everything else constant and finite, if the stratification is too strong.

Before proceeding it is useful to take stock of the various approximations we have made. They
are (i) the low-frequency approximation in passing from (3.20) to (5.4), and (ii) the fast-thermal-
diffusion approximation in passing from (5.5) to (7.1). The restrictions implied by these approxi-
mations are (5.1), (5.2), (5.8), (5.9) and (7.3). (Recall that (5.10) is covered by (7.2) and (7.3),
and (7.2) is covered by (7.9), which is a less strict requirement than (5.9).) We shall take % ~ gr
and the entropy scale height of order 7 for simplicity, and also take m ~ 1 because we shall find
below that this is the important case. We shall also find that o < V2 /Qr2, so that (5.3) gives a less
strict requirement than (5.1). Inequalities (5.1), (5.9) and (7.3) are then satisfied if

Vo< Q2 < N, (7.18)
2
g> 7%, Z<“§,——2 (7.194, b)

If we assume, for the present, that the departure from uniform rotation is at most O(V?2/0Q%?2),
then (5.2) is encompassed by (7.18). The inequalities (7.19) may usefully be cast in terms of the

parameters % and D:
€ > (s2d®) V/Q2r, D> V2/0Q%2 (7.20a, b)

43 Vol. 289. A.
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and (7.18) and (7.204, &) are the key approximations we have made. The parameters € and D
may be thought of as measures (of a kind) of ohmic and thermal diffusion, and may be chosen
independently of each other and of the diffusionless parametersin (7.18). In what follows we shall
take ¥ moderately large, and consider what happens as D is continually decreased from an initial
value much larger than %2. (¢ must not be too large, in fact, if the analysis is to be self-consistent,
but we shall return to this point later.) We may note that having chosen € > 1 and D 3 1,
(7.204, b) isin fact automatically satisfied by virtue of (7.18), because although s2¢2is occasionally
large in what follows, it is never so large that (7.204) is violated.

Now consider D to be finite. The final (destabilising) term in (7.11) can at best decrease 4 (from
its D = oo value of (7.14)) by an amount of order unity, and this amount is biggest when Ds*d4/
m2*%?issmall. When D > @2it follows that Ds*d*/m?@? is large, so that this effect is very weak, since
sd 2 1 and m ~ 1. (We evidently have no cause to consider m > 1, for although it may help
diminish 4 by the above mechanism it does so at the absurd cost of making the first term on the
right hand side of (7.11), m2s%/n? large, thus greatly hindering instability.) The fourth (stabiliz-
ing) term (D) is also small when D > 1, so while D » %2 > 1 the thermal diffusion has only a
very small effect on the D = o instability criterion.

When D ~ %2 > 1itisclear by inspection of (7.11) that m and n may now be chosen so that the
final term can reduce 4 from its D = oo value by an 0(1) amount. The value of m must still be
0(1), or the first term on the right hand side of (7.11) will be large, and zd must also be O(1)
or 2Ds%d*/m?*&? will be large and the last term in (7.11) will be small. Actual values of m and z will
depend upon the precise values of D/%? and the numerator of the last term. Let us now pass on
and reduce D still further.

The parameter range €2 > D > 1

It is clear in the paragraphs above why we shall consider m ~ 1. When €2 > D it therefore
follows that Ds*d*/m?*&* < 1 unless n*d* 2 %/ D. Let us suppose nd were large in this way, so as to
make Ds*d*/m?*&? 2 1. The opportunity of decreasing 4 by an O(1) number, via the last term of
(7.11), would not have been used to best advaniage, but would anything be gained elsewhere ?
The second term on the right hand side of (7.11) would have been made a lot larger than it was,
and an insignificant (order D¥/% at most) decrease would have been effected in the first term, so
the answer isno. Thus Ds*d*/m?%? < 1, and we continue our minimization procedure by expanding
thelast term of (7.11) binomially. Having done this it is quite helpful to rewrite the inequality in a
rather different form:

Q222 2 dF 2 2da\ _m3%2 544 1 1da\24Dstqd*
-(F)rgmen-(E-2) (G- Sriag) S rmat o (G2 D) e
(7.21)

The second term on the right hand side is negligible compared with the fourth, since D > 1,
and since 4% > D minimization takes place in exactly the same way as in the D = oo case (7.13),
but with different numerical results: 4
rdaft
n = €¥(8niD)—4 o d’
The right hand side is then unity to a first approximation, yielding an instability criterion which
can be simplified even further on using F = In (B/pr) and noting that in the present parameter
régime (5.1) the basic balance is almost hydrostatic so that (5.7) obtains. The final result is

(%:2)7;?—(1 n ?) — ( f)rz—d—ln(Br)>1 (7.23)

Z51—2+

m=1. (7.22)
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and from (7.7) the frequency at marginal stability is

2D ,» 2 1da\ V2

= (n'd%) (f‘z“:*ga';) 20

Since from (7.22), nd is of order (¥2/D)¥ we have  ~ (D/%%)¥ V2/Qr% and the frequency is thus

much smaller than that (V2/2r2) when D > %2 (see (7.15)). It follows that w/ys? is of order
(D/%%)3.

In the present régime, €2 > D > 1, the finite thermal diffusivity effects a very significant
decrease in the right hand side of (7.11), via the last term, from its D = oo value. Perhaps this can
best be seen in a simple example; we shall take the rotation to be uniform, and suppose an iso-
thermal basic state with scale height H = 4?/g, rather small compared with 7, so that (7.23)

essentially becomes d(Br)/dr < 0 (7.25)

(7.24)

and is to be compared with the corresponding result (7.14) for D = co:
d[B(pr)~t]/dr < 0. (7.26)

Since the scale height is rather small, p will decrease quite rapidly with 7, and to satisfy (7.26) B
then has to decrease with r considerably faster than it does to satisfy (7.25). The distinction
between the two is even more clear when curvature effects vanish, as in the plane layer model
shortly to be considered.

Clearly 4 does not continue to decrease as D does once D is sufficiently small for the third term
in (7.21) to be comparable with the fourth, and in view of (7.22) this occurs when D ~ %3.
Notably, this point at which 4 begins to increase as D decreases is also the point at which the
oscillation frequency w drops below the ohmic decay rate #s2 (cf. discussion of doubly diffusive
phenomena in appendix).

The parameter range D < 1

As D drops below a value of order unity the stratification (measured by D—1) exerts a strongly
stabilizing influence, for the fourth term on the right hand side of (7.11) begins to substantially
exceed unity and the fifth term is powerless to off-set this effect. When D < 1 we find from (7.21),
which still holds, that the fourth term on the right hand side is negligible compared with the
second, and the critical mode is thus (7.13), as in the D = oo case. The criterion for instability,
however, is then essentially

(), Lo (52 04 1y N:r®
(Vz)rdran—(;z—z—;)rdrlnB>; L (7.27)

so that without an extremely steep gradient of magnetic flux magnetic buoyancy will not give
rise to instability. A decrease in angular velocity with radius might suffice:

—rd%ln!.?z > g’gg, (7.28)
and this doubly diffusive instability criterion has a rather novel form, when compared with
(1.3) (say), in that the magnetic diffusivity » appears where one might (naively) expect the
viscosity v. This serves as a reminder that although the magnetic field does not explicitly appear
in (7.28) it is only by virtue of its presence that an angular velocity gradient satisfying (7.28)
would give rise to instability (and recall, also, that we are assuming throughout this section that
%> 1).
43-2
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It was remarked earlier that for the self-consistency of the above analysis % should not be too
large, and the reason is that the minimization procedures have involved attributing significance
to small terms on the right hand side of (7.11) and (7.21), and we must therefore make sure that
such terms greatly exceed the small errors in these expressions due to the low-frequency and fast-
thermal-diffusion approximations. We can give upper bounds to these errors, bearing in mind (i)
we have found above that m is O(1) at marginal stability, (ii) @ does not exceed O(V?2/02r?) (see
(7.7)), and (iii) we are interested in D greater than about unity (for ifit is not, a good approxima-
tion to the right hand side of (7.11) is simply D—1). The errors made by the various approximations
in passing from (8.20) to (5.4) may be seen to be at most of order max (V2/022r2, wys2%2/V2) in these
circumstances. The error made by the fast-thermal-diffusion approximation, i.e. passing from
(5.5) to (7.1),1is O(w/ks?). We can now go back to (7.14) and (7.21), therefore, and check for the
self-consistency of the minimization procedures; this turns out to be guaranteed provided that
%% < 222/V?, which is only a very weak restriction on the size of %.

The results established so far in this section are illustrated very schematically in figure 1 on
page 493. The first significant effect of decreasing the thermal diffusivity from a very large value,
or equivalently of increasing the (‘bottom-heavy’) stratification from a value such that D' € 52,
is to destabilize the system, in the sense that a less pronounced magnetic field or angular velocity
gradient is needed for instability. Eventually, however, when the stratification is large enough
(i.e. D small enough) it plays its more usual réle as a stabilizing mechanism. Also on the figure
are indicated the results established in the related studies of Gilman (1970), Roberts & Stewart-
son (1977) and Acheson & Gibbons (1978). The first two of these were derived on the basis of a
plane layer model, so we now briefly discuss the corresponding results to those above for such a
model.

A plane layer model

We confine attention to the uniformly rotating and isothermal case, with a small scale height
H = a*/g, < r and curvature effects neglected. This is effected by replacing the combination
m/r by an equivalent plane wavenumber £ in (7.11) but otherwise letting - co. To avoid con-
fusion we continue to use d/dr, but this is to mean simply differentiation with respect to the verti-
cal coordinate. We are considering, therefore, the locally plane layer limit of our cylindrically
symmetric and equatorially located (g, = 0) model, the stability of which is governed by (7.11).
If we introduce the dimensionless wavenumbers £’ = kH, I’ = ld, n’ = nd and s’ = sd, we can then
write the planar equivalent of (7.11) in the following way, on dropping primes:

d. (B o2 st 1 2D, s*\ 2
—Ha—;ln(-ﬁ) >k ﬁ_i—(gikz-i-p*_(l_i—_%ﬂ?) . (7.29)

Here %, and D, are identical with € and D as defined by (7.12), except that the scale height
H replaces r where it occurs. We suppose % > 1. The differences between the results of this model
and those of the one considered above arise primarily because there is no lower limit on £ here
corresponding to that (of unity) on m in the previous case.

When D, = oo the last two terms of (7.29) vanish, and instability first occurs for

7t =yt k2 = YEn2/E, (7.30)
d, (B\ _ 3n%y3
when —Ha’ln (-E) > -—?;— (7.31)
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(Acheson & Gibbons 1978). The frequency at marginal stability is £V2/2Q2H?2. The mechanism of
stabilization is conceptually quite different to that in (7.14); there the ‘elasticity’ of the field lines
was called into play by their twisting and ohmic effects were negligible. Here the twisting of the
field lines can be made arbitrarily weak, but the growth rate then eventually (by (7.1)) falls below
the ohmic decay rate, so that ohmic effects provide the stabilizing influence in (7.31). Note from
the second of (7.30) that £ at marginal stability is small, since %y > 1.

When D, is finite inspection of (7.29) reveals that stratification has little effect until D, drops
to about %%. Similar arguments to those used earlier then show that, via the fourth term in (7.29),
it has a significant destabilizing effect. This is particularly evident when €% > D, > 1, in which
case we deduce from (7.29) that instability sets in when

d ,Di 1
-‘-Ha—;_ll’lB>6\/3TC @-—*-E’ (7.32)
the critical mode being n? = in?, k2 = 3n2DL/%,. (7.33)

Note that the azimuthal wavenumber has increased (cf. (7.30)). The frequency at marginal
stability is \ :
I 2
= —ﬁ-(%) é[ﬁ (7.34)
s0 w/ns? ~ (Dy/Bh)E.

Bearing in mind the approximations involved, we see that (7.31) essentially says that B/p
must decrease with height, while (7.32) simply says that B must decrease with height, and this
shows how much the effects of stratification have destabilized the system.

As D, decreases from %% towards unity it is clear, however, from (7.32) that this curious
behaviour doesnot continue. The right handside of (7.32) has a minimumwhen D,, = (%, /3n2/3)3,
and a further decrease of Dy has a stabilizing effect as the stratification begins to play its more
usual réle. As in the cylindrical case, the point at which this happens is just that at which the
oscillation frequency w drops below the ohmic decay rate, although here that point is Dy ~ %},
while in the cylindrical case it is D ~ %%, the difference arising because m is quantized in that
case. This does not explain, in any sense, the curious response of this system to stratification, but it
does at least tie in with the author’s expectations on the basis of other doubly diffusive problems
(see the appendix), and can be seen to have an important effect on (5.5). The curious réle of
stratification undoubtedly arises from the fact that the very last term in the radical may be
significantly complex, but when  is small compared with botk diffusion rates 7s* and «s? it simply
plays a stabilizing réle by providing an extra positive contribution of order Dg! compared with
those already present.

Finally, let us return to the régime D, ~ %%. Inspection of (7.29) reveals that the minimization
of the right hand side is achieved, as (7.33) would suggest, by taking £ and # of order unity. By
such a choice the second and third terms are rendered negligible, while the destabilizing potential
of the fourth term is well exploited. It could be exploited better still by taking £ large, but the
effect of this would be more than off-set by the concomitant increase in the first term.

In order to relate the above theory to that of Roberts & Stewartson (1977) we finally take, as
did those authors, a basic state of constant Alfvén speed, Bocpt. In that case the left hand side of
(7.29) is approximately — %, and instability evidently cannot occur in this rapidly rotating system
if Dy = oo, as Gilman (1970) found. When %% ~ D, the neglect, as discussed in the previous
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paragraph, of the second and third terms on the right hand side of (7.29) and a little re-arrange-
ment leads to %2 st/k2

2D, ” (F+ kst /nd 11
as the condition for instability. Roberts & Stewartson’s analysis is nof restricted, as ours is from the
outset, to low frequency solutions in the rapidly rotating V2 <€ £22H? limit, but if we take this
special limit in their equations (3.3) and (3.20) (in their notation the limitis A > 1, wy ~ A71) we
obtain precisely (7.35). With our notation but their result (the last entry in their table 1) the
critical value below which « has to fall for, as they term it, a ¢ conductive’ instability, is given by

%%/Dy ~ 3447t for k= 0.27,l=mn=mn/\2, (7.36)

(7.35)

and this corresponds to travelling from A to B along a horizontal line? in figure 1 (on page 493).
Some insight into the instability when %2 ~ D, may be obtained by noting from (7.7) that

since (reverting to dimensional wavenumbers) £ ~ H'and/ ~ n ~ d=',w ~ V?/QH?2. In the plane

layer, uniform rotation and isothermal limit (7.1) may be written

kve . Vk[V:d, (B 29 iw 3

A it | S (2 YR LN b By 4

20H " QQ[Hdrln(p) vk n2+KyN Ks2yN ] ? (7.37)

and if B/p does not decrease with height the system is stable when « = co. Further, when « # oo

instability can then arise solely through the final (imaginary) term in square brackets. Now in the

present régime the third and fourth terms in square brackets are order %2 and %! respectively

W =

compared to the first two, and expanding the square brackets binomially we thus obtain a small
growth rate term, O(nd~2), which given precisely the right circumstances indicated by (7.36) is
large enough to off-set the term in (7.37) representing ohmic dissipation. Thus although insta-
bility may occur for smaller magnetic field gradients than are needed when Dy > %3, one should
note that the growth rates are much smaller, by a factor of order % , than those (O (V2/2H?)) that
result when B/p decreases with height so as to make the real part of the expression in square
brackets in (7.37) negative.

8. MAGNETIC INSTABILITIES OF A NON-ROTATING GAS

Our main interest throughout most of this paper has been the instability of rapidly rotating
(V% < £2%2) systems. We now discuss non-axisymmetric instabilities in non-rotating systems, the
corresponding axisymmetric results already being available in §4.

Diffusionless theory
When v = = k = 0 and 2 = 0 we obtain from (3.20) an equation which is biquadratic in
o (provided m # 0). Letting w = ig it becomes a biquadratic in ¢ with real coefficients, and it
follows that a sufficient condition for instability is that the constant term is negative, i.e.

G 2\.,0Q mV%s® GOE
(yaz—;—) V oh +—?’2 772+51—6-}; < 0, (8.1)
where we recall that Q = In (Br). (8.2)

1 One cannot ‘travel’ much to the right of B and eventually find stability again with the Roberts & Stewartson
analysis, which involves an expansion in their small parameter ¢ for fixed (formally O(1)) values of their para-
meters § and A. This implies 8 ~ Dy? in our terminology, so that the expansion procedure breaks down once
Dy ceases to be large.
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The left hand side of (8.1) is quadratic in //z, and we thus obtain by the standard procedure
employed in this paper the result that the system is unstable if any of the following conditions are

satisfied:
& 2\ 00 &.OE m2V2
(ya2 r) - ar v or t <9 (8:3)
L 1 0Q | & 08 MV
eVt <O (8.4)
- Ll (& 209, & 1,9Q 80K g_@@r
<<J\AJ‘ 4 [(77113_ ;) 2 tya ya? 4 ot vy or + vy 0z
- 0Q g0k mV® . ,0Q | £,0E  m2V®
8 2l | & & = -
§>-4 [ya2V 2t 0 az+ r2 }[(yaz r) Ve o 0% T ] (8.5)
8 E Instability occurs most easily for the m = 1 mode, and these conditions have been obtained by
- 5 Tayler (1973) (see his equations (2.20)—(2.22)). In addition, and more significantly, he showed
af@ that the satisfaction of at least one of these is necessary for instability of the system by applying the
=w energy principle of Bernstein, Frieman, Kruskal & Kulsrud (1958). Comparison of (8.3)—(8.5)

PHILOSOPHICAL
TRANSACTIONS

PHILOSOPHICAL
TRANSACTIONS

A

with the corresponding axisymmetric criteria (4.3)—(4.5) (setting £ = 0) is interesting, for it
shows how @ has effectively replaced F as the key quantity as far as the instability is concerned. In
particular if a2/g < r and V2 5 4?2, then (4.3) becomes, in the non-rotating case,

w
0
g 0. (B\_N?
—-‘)Ta—z'-a—"_ln( ) Vg’ (8'6)
2 N2
while (8.3) becomes ngaa In (Br) > = +74- (8.7)

Because a%/g < 7, the over-riding difference between the two left hand sides above is the presence
of p (which will have scale height of order H = 4%/g) in the first but not in the second, so that
instability (due to magnetic buoyancy) occurs most readily in a non-axisymmetric way. The
stratification in the radiative zone of a typical star, however, is such that N2H2> V2 and in
general exerts a very strongly stabilizing influence. Tayler (1973) showed that instability will
nevertheless always occur sufficiently close to the axis of symmetry of the star if there is a non-zero
electric current density on that axis. We now investigate an alternative possibility, namely the
relaxation of buoyancy forces by doubly diffusive effects.

é Doubly diffusive reduction of buoyancy effects
> E We now restore all three diffusive processes and set @ = 0 as well as 2 = 0 in (3.20), thus
2 3] obtaining o aQ - - . 5 G —_—

e 2 $im 7] s m - _
43N @) (-a—-2 )V a/Z - Gaz'ﬁ'l}?]—'l‘ | & (;——;—2) (l-l-m) (8.8)
L O
=w as the inequality governing the onset of monotonic instability. By the same procedure as usual

we find that in the absence of viscous effects the system is unstable if any of the following
conditions are satisfied:
2 E)Q OE m? V2
. (;;% ,) Tt ie <0, (8.9)
V20Q n OF mP?
gz-&;—é-z—+;gz—az+ o <0, (8.10)
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1[{g, 2 0Q L& , 0Q 0FE n OFE
1[((1_2—7')V oz a2V —E)7+;g‘ E)r+Kg’az]

85 175 0Q i OF mﬂ”][( _) _Q n OF 7712172
[ 4 0z ngaz-l- at r o kTR (8.11)

Comparison of these criteria with (8.3)-(8.5) immediately reveals the new effects; adiabatic
sound speeds have simply been replaced by isothermal ones, and the effectiveness of any stratifi-
cation has been reduced by a factor yy/« due to doubly diffusive effects. The quantity @ remains
the important one for instability, but when 7 is sufficiently large, in the sense 4%/g < r and B(0B/
Or)~! < r, curvature effects are negligible and, on using the notation £ = m/r, we have the planar
analogue of (8.9):

lnB > k24 ’”’Iﬁv. (8.12)

With « = co this reduces to the criterion for magnetic buoyancy instability obtained by Gilman
(1970). A decrease of magnetic field, rather than (as required when £ = 0) magnetic flux B/p with
height is the essential requirement for instability, which takes place mostreadily for (indefinitely)
small but non-zero £. The reason is simply that a little twisting of the lines of force helps magnetic
buoyancy instability, since it permits the flow of gas down the rising portions of the distorted
flux tubes to the sinking portions, which enhances the magnetic buoyancy effect (Parker 1955),
while too much twisting (i.e. & too large) results in the restoring forces arising from the ‘elasticity’
of the field lines outweighing the magnetic buoyancy effects.

When « is finite, however, apparent once again is the definite limit to the extent to which it can
relax the conventional buoyancy forces, and only a very steep magnetic field gradient will give

magnetic buoyancy instability unless
D,z 1, (8.13)

a familiar criterion from §7. Roberts & Stewartson (1977) have also noted this result in their iso-
thermal and constant-Alfvén-speed model, and the £ — 0 limit of (8.12) reduces to their equation
(A 11) in that case. In their plane layer model viscous effects place a lower bound on the wave-
number £ for which instability can occur. If the viscosity is sufficiently small, however, a situation
analogous to that in the D = oo subsection of § 7 (see also Acheson & Gibbons 1978) then arises,
and the geometry imposes the lower limit (of unity) on m. Thus in a cylindrically symmetric
configuration we find from (8.8) that when

V2dt r\#]*
is large instability sets in essentially when (8.9) is satisfied, the critical mode being
T x\in
l=2, m = 1, n = (5—1'_5—4) 2 (8.15)

Almost horizontal motions

Even in the presence of a vertical stratification so strong that (8.13) is violated, so that neither
adiabatic nor large-thermal-diffusion magnetic buoyancy instability can occur, there remains
of course the possibility that a toroidal magnetic field distribution may be unstable to almost
horizontal motions, for they encounter only very weak buoyancy forces.
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We consider, in the first instance, adiabatic axisymmetric perturbations, and know by setting
£ = 01in (4.5) that instability will result if

(OEOF aEaF) 0

ordz 0z Or (8.16)

i.e. if B/pr increases outward along a surface of constant specific entropy. This is evidently a
magnetic analogue of the Hgiland criterion for axisymmetric baroclinic instability, and we are
immediately moved by subsequent developments in that theory to examine non-axisymmetric
disturbances. The appropriate criterion is (8.5), and we shall re-write it in the following way:

E[(_{L_2)V2%_&_V2%2+graE gza_E]z

4| \ya® r 0z vya® O y 0z y or
2V, a_EaiZ_a_EaQ) miVt miVEr g, 2) ,0Q g, .0Q  g0F g0F
> y(ar oz oz or AT [(7‘12 r 4 57+7an E—F;E—F?a_z]’ (8.17)

Although further simplification is afforded by the fact that the left hand side vanishes, as may be
seen from (2.20), in order to obtain some physically intelligible results we confine attention to the
case V2 < a? ~ gr, inwhich event the magnetic field causes only a small asymmetry to the system
and, by (2.11) and (2.20), surfaces of constant density and specific entropy are almost spherical.
The terms involving the entropy gradient on the right hand side of (8.17) are then bigger by a
factor O(a?/V?) than those which do not, and we have as the criterion for instability to non-
axisymmetric disturbances

2g, (OE3Q aEaQ) m*( QE OF
(e alen reg) <O (8.18)
This in turn is more easily written in the form
0Q /060 > m?/sin 20, (8.19)

where we have switched to spherical polar coordinates and @ is the polar angle. Clearly the most
easily excited modeis m = 1. With alittle algebra we may show from (8.19) that instability occurs
in this non-axisymmetric way if B?sin 26 increases outward along a spherical surface.

This instability of a toroidal field structure subjected to a large stratification is not, of course,
magnetically buoyant in origin; gravitational effects play essentially no réle except for dictating
firmly the very small class of disturbances to which the system is unstable. Criterion (8.19) can
alternatively be derived directly from (8.1) (orindeed from (8.8)) by asking in what circumstances
instability arises with modes having almost horizontal motions such that 0£/0h = 0 and G = 0.

In the same circumstances V2 > a® ~ gr and expressed in the same terms, the criterion for
axisymmetric instability (8.16) is that B%/sin?@ should increase outward along a spherical
surface. A little algebra then shows that non-axisymmetric modes are more easily excited (i.e. by
weaker magnetic field gradients) for ® < 4= but that axisymmetric modes occur more readily in
the equatorial region @ > im.

9. CONCLUDING DISCUSSION

I should like to briefly summarize what I believe to be the more significant results of this paper
on magnetic buoyancy instability. For simplicity I shall, for the most part, exclude extreme
values of the magnetic field gradient from the discussion, envisaging the scale height of B as

4“4 Vol. 289. A.
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roughly H or r, as the case may be. It should be borne in mind that the stability criteria quoted
will frequently be first (but perfectly satisfactory) approximations to the full (often more un-
wieldy) inequalities. Statements concerning dependence on z will be framed from the viewpoint
of an observer in the northern hemisphere.

No stratification

We have in mind application to convective systems which have established almost adiabatic
temperature gradients, and we consider the case of small scale height H < r, asin the upper layers
of the Sun.

In the non-rotating case either a decrease of Br with r or of B with z gives non-axisymmetric
instability (see (8.3), (8.4)).

In the rapidly rotating case a decrease of B/p with either ror z gives non-axisymmetric insta-
bility in the form of amplifying waves with speed O(V2/QH) (see (6.1)—(6.3)) provided that
ohmic damping is not too heavy, and this requires

Gy = (V2/20n)(d/H)* (9.1)

to be greater than about unity. Circumstances are conceivable in which v and #, though small,
are so disparate as to render an axisymmetric mode more easily excited. This would require, very
roughly, V2/Q%*H? to exceed v/y or 9 /v, whichever is the smaller, instability being oscillatory in
the first case and monotonic in the second (see (A 5) and (A 11)).

Strong stratification (V2 < N%r?)

We have in mind here the radiative interiors of stars, and take H ~ r and v < 5 < «. Fully
three-dimensional adiabatic instabilities are virtually impossible, whether 2 is large or small, and
instability modes may avoid the otherwise crushing effect of stratification only by either almost
horizontal motions or a multiply-diffusive mechanism of some kind.

In the non-rotating case whether axisymmetric or non-axisymmetric modes involving almost
horizontal motions occur most readily depends on latitude. If® > }r instability of the former kind
is preferred and sets in when B2?/sin?@ increases with @. If on the other hand @ < }r non-
axisymmetric instability is preferred and sets in when B2?sin 26 increases outward along a spheri-
cal surface. In both cases the mechanism is conceptually quite different from that of magnetic
buoyancy, which thrives on a decrease of B in the vertical direction.

An alternative mechanism is the relaxation of conventionally buoyant restoring forces by fast
thermal diffusion, as invoked by Gilman (1970) and Cadez (1974). This is effective provided

k V?
D= ')—77/N2r2

(9.2)

is greater than about unity, but not otherwise. This parameter is totally analogous to the para-
meter a~! that arises in Goldreich-Schubert instability (see (1.6)). It is a measure of the ratio
between the extent to which thermal diffusion « weakens the stabilizing effect of stratification N2
and the extent to which the magnetic diffusivity # weakens the destabilizing effect of the magnetic
field gradient. When D 2 1 magnetic instability occurs for a modest variation of B with 7 or z,
but whether axisymmetric or non-axisymmetric modes are most easily excited depends in a
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complicated way on the particular configuration involvedt (see (8.9), (8.10), (A 1), (A 2)). Thus
curvature effects render Schubert’s (1967) work on axisymmetric magnetic instabilities relevant
to stellar interiors in a way that it is not at higher levels, where H is small and non-axisymmetric
magnetic buoyancy is preferred (see (1.13) and (1.14)). The parameter D arises in both axi-
symmetric and non-axisymmetric cases, and if it is substantially smaller than unity buoyancy
forces are only weakly relaxed by thermal diffusion and a large magnetic field gradient is needed -
for instability:

_(&_2) 22 Ty N2 _&pd T, N2
(a2 r) |4 aflnB > KyN,. or o 14 aZlnB > KyNg (9.3)

(see (8.9), (8.10), (A 1), (A"2)).

magnetic
field
dient
gradien /
unstable

(i) ©
|
(i) @

(i)

I |
0 @, 1

D}

Ficure 1. Magnetic instability in a rapidly rotating and strongly-stratified fluid. The magnitude of the field
gradient (i.e. dimension of system -+ magnetic field e-folding height) is here plotted against D%, a suitable
measure of the stratification (proportional to N2). The small parameter @52 is proportional to £22 The effects
of stratification are virtually annulled by thermal diffusion until N? is large enough that D! ~ @52 An
increase of stratification beyond this value at first has a very significant destabilizing effect on the system, but
as N2 becomes larger still buoyancy forces play their more traditional stabilizing réle. The points A, B and C
locate previous studies, discussed in the text. The marked values of Dg?! along the horizontal axis denote
orders of magnitude only.

In the rapidly rotating case non-axisymmetric instability involving almost horizontal motions
occurs if B? (tan @sin2@)~1 increases outward along a spherical surface. It takes the form of
westward-propagating waves with speed O(V?2/Qr) (see (6.10)), but only occurs if the ohmic
damping is not too large, i.e. if € 2 1 (see (6.12)). Two alternative instabilities both invoke
thermal diffusion to diminish the effectiveness of the stratification. The first is axisymmetric, and
somewhat novel in that it calls for the simultaneous operation of two quite different doubly
diffusive mechanisms. This stems from the fact that one of the stabilizing agents (N?) has associ-
ated with it a large diffusivity (k > %) while the other (£22) has a small diffusivity (v < 7) associated

+ For an isothermal basic state, to take one example, non-axisymmetric instability is preferred for r > 2H
and requires a decrease of B with r or z. This is a magnetic buoyancy instability and the result coincides with
Gilman’s in the ‘plane layer’ limit H - 0. Axisymmetric instability, on the other hand, is preferred for H < r < 2H,
while for r < H non-axisymmetric instability is preferred again (!), neither of these two being of a magnetically
buoyant type.

44-2
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494 D.J. ACHESON

with it. Instability occurs when the gradient of F exceeds the square-mean-root of the values it
would have needed to overcome (in quite different ways) the effect of each constraint separately:

_ (& _2\ . 9F [(ﬁ 2)% (z 2)%]2
(a2 r)V > K')/N, + 8779

(see (A 20)). Growth is on a dynamical time scale, albeit one reduced by multiply-diffusive
effects (see (A 26)). The second type of instability is non-axisymmetric and it is the azimuthal
pressure gradients and Lorentz forces implied by this non-axisymmetry, rather than the action
of viscosity (as in the multiply-diffusive instability above), that breaks the otherwise thoroughly
stabilizing constraint that individual fluid rings initially symmetric about the rotation axis
should conserve their angular momentum.

This instability may be conveniently discussed in a qualitative way by reference to figure 1,
while the relevant instability criteria may be written:

_(4_2) 24 (2)
(42 r)r drln o > 1+

(9.4)

2
(rd_a), for %2< D;

adr

~(&-2) g > 1, or <D<y 8-5)
_(é;_g)rz_d_ln3>p—l, for D<1.
a® r) dr

If regarded very schematically, figure 1 covers a broad range of situations provided the magnitude
of the magnetic field gradient (by which we mean inverse magnetic field scale height, suitably
non-dimensionalized by the scale of the system) is regarded as increasing monotonically in some
way up the vertical axis. The gradient must, of course, be of the appropriate sign for instability.
Inside the critical radius instability is promoted by B increasing with 7, and the mechanism is an
essentially  incompressible’ one (cf. Acheson 1972). Outside the critical radius a decrease of B
with 7 promotes instability and the mechanism is that of magnetic buoyancy, for which com-
pressibility effects are crucial. In addition, figure 1 holds good even if the instability mechanism
is a weak differential rotation with the angular velocity £2 decreasing slightly with 7 (see (7.11)) and
the magnetic field acting essentially as a catalyst, in which case the magnitude of the £2-gradient
would be regarded as increasing up the vertical axis.

Alternatively we may consider the special case of the uniformly-rotating and isothermal plane
layer, for which magnetic buoyancy is the only instability mechanism. The criteria corresponding

to (9.5) are J
d B 3n2./3
—_— Ha;ll’l (;) > %* .

d ,Di 1
—H&lnB>6J3n ?*_"F*’ for

for %L < Dy;

1< D, < 62 (9.6)

d -1
—Ha—rlnB > Dgzl, for

In this case the points (i), (ii) and (iii) in figure 1 may be specifically identified with the field
distributions B = constant, Boc p% and Boc p respectively. Along the horizontal axis is plotted a
suitable measure of the stratification (or inverse measure of the thermal diffusivity ), namely the
reciprocal of the dimensionless parameter

D, < 1.

k V2

.D* = 7—75,]—\].2—]72' (97)
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We emphasize the following restrictions which we placed on the analysisin §7 leading to figure 1:
(1) V2/H?2 < 2% < N2, (ii) G, > 1, (iii) /9 > N?2/0Q2

Gilman’s (1970) system is at point A and is stable at the rapid rotation speeds we are currently
considering. Acheson & Gibbons (1978) essentially travelled up vertically from A (i.e. keeping
k = o) and demonstrated instability, for a rather steeper magnetic field gradient than Gilman
considered, at C. As we decrease « from its infinite value the stability criterion is hardly affected
until D, drops to O(%%), when a significant decrease in the critical magnetic field gradient results.
At point B this destabilizing effect of the finite thermal diffusivity is sufficient to make Gilman’s
constant-Alfvén-speed atmosphere unstable, as Roberts & Stewartson (1977) discovered by
(effectively) travelling along the horizontal line from A to B. An even more puzzling feature of this
portion of the stability diagram is that increasing the ‘ statically stable’ stratification tends to destabilize
the fluid, although Roberts (1978) and Roberts & Loper (1978) have noted similar curious
behaviour in a related incompressible system. As we reduce « further there comes a point, with
1 € D, < %%, at which these destabilizing effects are most potent, and for the plane layer model
only a tiny decrease of B with height is sufficient for instability when they are working at their
best. This point is at Dy ~ %} in the plane layer case, but at D ~ %% in cylindrical geometry, the
difference arising because the wavenumber component along field lines is quantized in the latter
case but not in the former. As « is reduced still further the more easily understood stabilizing
effects of buoyancy begin to assert themselves. Thus, when D, has dropped to O(1) the critical
magnetic field gradient is back to something like its D, = oo value, and as k continues to decrease
this critical gradient rapidly increases as k! until the breakdown of both the low-frequency and
fast-thermal-diffusion approximations takes the system out of the range of validity of the present
theory.

I wish to thank Professor P. H. Roberts for helpful discussions, and I am very grateful to him
and Professor K. Stewartson, F.R.S., for sending me their paper on magnetic buoyancy
instability well in advance of publication, for this stimulated the investigations reported in §7.
I am also grateful to the C.E.G.B. for a Research Fellowship during the period in which this work
was carried out.

APPENDIX. THE AXISYMMETRIC DIFFUSIVE INSTABILITY OF TOROIDAL MAGNETIC
FIELDS IN A ROTATING GAS

By D.J. ACHESON a~np M. P. GIBBONS

The question we are asking here is whether, when v < 9 < «, a toroidal magnetic field can give
rise to axisymmetric instability by some multiply-diffusive mechanism when, according to the
diffusionless theory in §4, rotation and stratification act jointly to suppress it. It turns out to be
essential to first examine how the magnetic field might overcome the rotation and stratification
when acting separately, for quite different mechanisms are involved in the two cases.

Magnetic instability of a stratified gas

In the absence of rotation we find from (4.13) and (4.14) that instability occurs if either of the
following criteria are satisfied:

94%\ V20F 3 OF
—(gr—‘r-)?§>;g15, (A1)
V2oF q OF
T8 2 T k% (A 2)
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496 D.J. ACHESON AND M. P. GIBBONS

We are interested in the case 9 < k, and comparison with the diffusionless criteria (4.3) and (4.4)
shows how the stabilizing effect of the entropy gradient is here reduced by thermal diffusion.
Other stability characteristics are much the same as in the diffusionless case; a decrease of F with
r promotes instability outside a critical radius, while an increase of F with r promotes instability
within it. The critical radius is a factor y smaller than in the diffusionless case. All these results
have been obtained by Schubert (1968). The essential requirement for instability, given g ~ a2/r
and that the field has the correct kind of gradient, is

Ve
ol > z . (A3)
Even if (A 3) is not satisfied we note from (4.15) that instability will still occur if
OEOF OEOF
gz(g'gz—gzgr) <0, (A4)

i.e. if the magnetic flux increases outward along a surface of constant specific entropy, the associ-
ated motions being such that the term G 0E/0h in (4.12) is zero, or perhaps even negative, for
reasons mentioned in other contexts in §4.

Magnetic instability of a rotating gas

In the absence of any stratification we note that it makes no qualitative difference whether we
consider perturbations that are virtually adiabatic (w > ks?) or good heat exchangers (o < ks2);
reference to (4.1) shows that one must simply use the appropriate speed of sound, adiabatic
or isothermal, in each case. We shall frame our results in the latter terms. According to (4.13)
diffusive magnetic instability may occur despite a stabilizing angular momentum distribution
(OR/0r > 0) if 24%\ V20F 7 - OR

—(g,—= 02

—_—> L%,
rJa2or v or

(A 5)

If pwere less than v thiswould be entirely analogous to the preceding instability and to the reverse
situation of Goldreich-Schubert instability in §4, and its physical explanation would follow
similar lines. We are interested, however, in 9 greater than v, and an interesting state of affairs then
arises if we compare (A 5) with the criterion we would have obtained with v = 9 = 0 but with
o < ks% or k formally infinite. Hopefully the reader will accept, in view of the above remarks, that
this can be obtained by knocking out the entropy gradient term in (4.3) and replacing ya? by a2,

whence:
2a%\ V2OF V2 o, OR
—(gr——r—)?5> (1 +?)Q 7'5;, (A 6)
. Iv if 7 Ve .
and evidently i > > 1+72- =J (A7)

the diffusive instability criterion (A 5) is less easily satisfied than the corresponding diffusionless
one (A 6)!

The source of this behaviouris clear, at leastin a qualitative way. In the previous example, asin
Goldreich-Schubert instability, the diffusivity associated with the driving mechanism was the
smaller of the two involved. We are now trying to drive the instability with the mechanism having
the higher diffusivity, and given the nature of the physical explanation of Goldreich-Schubert
and related ‘salt-finger’ instabilities it is no surprise that instability is not now occurring in the
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same way. As with other double-diffusive problems of this kind (see, for example, Turner 1973)
what happens is that if (A 7) is satisfied the system sti// goes unstable for a weaker magnetic flux
gradient than indicated by (A 6), but it occurs in the form of slowly growing oscillations, as we now
show.

Take (4.1), set k = 00 and VE = 0, and divide by jow +i#ns% Equate the real and imaginary
parts of the resulting equation separately to zero, regarding w # 0 as real. Eliminate F between

the two to obtain .
1—jv/y\n? ., OR
2 2.4 — 2
w? +v2s —(1 jv/ﬂ)szgrah’ (A 8)

as an expression for the frequency of oscillation w, and eliminate R between the two to obtain an
expression for the marginally stable magnetic flux gradient:

(G- - g s

at r oh nn® (1—gv/y) °

We note at once that w, as given by (A 8), can only be real and represent an oscillation if (A 7) is

satisfied. In other circumstances, such that (A 5) would have been a ‘satisfactory’ diffusive

instability inequality, the oscillatory instability we are currently pursuing would be impossible.

Itis clear that if the diffusivities » and 7 are very small the terms v%s%in (A 8) and 2s*in (A 9)

may be neglected for all but the shortest disturbance scales of interest. Substituting for w?in (A 9)

we then find that instability will occur essentially for any mode with wavenumbers / and z such

that .
(G2 pu2F v/ ( : 9@)
(a2 r)V 571>1+jv/77 "Q’a/z ) (A 10)

(A 9)

By applying the same procedure as on previous occasions in this paper we conclude that the
system is unstable if any of the following criteria are satisfied:

_ (& _2) o OF 2]'21’/77( 2%)
<a2 r)V o~ L4gv/y 'Q’ar ’ (A 11)
g,0F/0z < 0, (A 12)
OROF OROF
gz('g;a—z—a—za) < 0. (A 13)

By comparing (A 11) with (4.3) it is easy to see that when the former is satisfied instability occurs
in its present oscillatory fashion for weaker magnetic flux gradients than required according to the
diffusionless theory. Indeed, ifj ~ 1but v < 7 the stabilizing effect of rotation is greatly reduced, as
(A 11) shows. Thus, if v and 9 are widely different (no matter which is the larger) the stabilizing
effect of rotation is considerably relaxed, one way or the other.

A triply diffusive magnetic instability

In practice, of course, both rotation and stratification may be acting in concert to hinder
magnetic buoyancy instability, and an interesting situation then arises because with » < 9 < «
one of the stabilizing influences has a higher diffusivity than that of the driving mechanism, while
the other has a lower diffusivity. To overcome the stable stratification the fluid wants to go
unstable in a monotonic way, while as we have seen in the subsection above it needs to go un-
stable in an oscillatory manner to overcome the stabilizing effect of rotation. The method by
which it resolves this dilemma, essentially by compromise, is rather interesting.
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First we have to turn back again to (4.1) and proceed, in the first instance, on the assumption
that |o| < ks? at least, for otherwise it is difficult to envisage how the stabilizing effects of stratifi-
cation could possibly be relaxed by multiply-diffusive effects. By much the same procedure as
outlined in the previous subsection we thus obtain an expression, at marginal stability, for the

frequency of oscillation
(1—gv/n) Q2% 0R/0r

2 204
AV = T ge /) st/ + (g, + 2V2)r) (ykst) T OE for (A 14)
and for the critical magnetic flux gradient:
(82 oF _mok P VR (e v
(a2 r)V (1+]77) o~ kor |5 1+77 &t st 9
¥ g OR (202 + st
+277Qrar ol B (A 15)

We are here restricting attention for simplicity to the equatorial plane, so that g, = 0. In other
respects, as may be checked, (A 14) and (A 15) are simply extensions of (A 8) and (A 9) toinclude
the effect of an entropy gradient, but within the ‘large’ thermal diffusion approximation |w| < «s2.

One or two further simplifications can be made. We have been thinking in terms of magnetic
buoyancy instability, for which g, > 242/r, and we see that according to the diffusionless criterion
(4.3) this will only be strongly suppressed by the stratification if

V2/a® < 1, andthus V?/r<g, (A 16)
and similarly it is only strongly suppressed by the effects of rotation if
V2/a® < Q%/g. (A 17)

(Since 2% < g (A 17) in factimplies the first of (A 16).) We therefore make these approximations
in addition to that of v/9 < 1. Furthermore, it is clear by inspection of the final term of (A 15)
that there is no hope of a multiply-diffusive reduction of the stabilizing effect of rotation unless
o > vs?, for otherwise that term is of order (n/v) 2%. With these additional approximations,
(A 14) and (A 15) become

Q% 0R/or
52 /n2+g,(kns?) "L OE [or (A18)
() D (0 oy g 2R 2
and (a2 r) r:— F it 1+77234 77!2 ra (1t (A 19)

respectively. We may minimize the right hand side of (A 19) with respect to w?/92s* to obtain the
critical magnetic flux gradient:

&) ra=|(eg) + (5og) |
—(;é r)Vzar—[Kgrar 2@ or ’ (A 20)

and this occurs for any pair of wavenumbers (/, z) satisfying

(s“ & aE) (2%*r0R /0r) (g,0E/ 6r
PR e
n® 9k Or 2kvy?

(A 21)

On substituting (A 21) into (A 18) we can find 4 posteriori the conditions under which our original
assumption of »s? € » < «s*is valid, and when combined with the condition that s¢/s% be positive
in (A 21) these are essentially 0 2
2 < (—) (f) . (A 22)
4 IZAV

KIV
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The smallness of the diffusivities means that the total wavenumber s must, according to (A 21),
be large at the onset of instability, and when
02
Y < =T (A 23)
8
the second term in bracketsin (A 21) is negligible. We note, without presenting the details of this
particular calculation, that the expression for the growth rate near marginal stability then takes

the form
g aE/ar) ” OFfor ]
1= [1+(2w<.02rale/ar (OF [or)e 1vs?. (A 24)

The modes that grow most rapidly have a total wavenumber s as large as possible subject to
(A 21) and thus take the form, as in the Goldreich—Schubert (1967) instability, of long narrow
cells normal to the rotation axis with a large axial wavenumber z (> /) given approximately by
(.er OR/0r) (g, Z‘)E/E)r)

2kvy?

(A 25)

Substituting into (A 24) we find that when 0F/0r exceeds its critical value by a small fraction 8:

e o (3 (B 0 () aom

so that growth takes place on a dynamical time scale, albeit one lengthened by multiply-diffusive
effects.
Compare (A 20) with the diffusionless criterion (4.3) in the case V'?/a* < 1:

(& 2 oF graE 5 OR
(7a2 r)V o a + 2 o (A 27)

Despite the parameter ordering v € 7 < «, the system can evidently find a way of reducing the
effectiveness of the stratification by a factor O(n/«) at the same time as reducing the effectiveness
of the rotation by O(v/#). It manages this ‘ triply diffusive’ instability essentially as follows. The
stabilizing effect of rotation is vulnerable to being broken by overstability, so to achieve this the
fluid partakes in an essentially inertial oscillation (A 18), but one with a carefully chosen short wave-
length. This wavelength is not so short that viscous effects damp out the oscillations (v/2 < A?)
but it is short enough for rapid heat diffusion (A2 € k/£) to annul most of the stabilizing influence
of the stratification.
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